Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samantha E. Zak is active.

Publication


Featured researches published by Samantha E. Zak.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Postexposure antibody prophylaxis protects nonhuman primates from filovirus disease

John M. Dye; Andrew S. Herbert; Ana I. Kuehne; James F. Barth; Majidat Muhammad; Samantha E. Zak; Ramon A. Ortiz; Laura I. Prugar; William D. Pratt

Antibody therapies to prevent or limit filovirus infections have received modest interest in recent years, in part because of early negative experimental evidence. We have overcome the limitations of this approach, leveraging the use of antibody from nonhuman primates (NHPs) that survived challenge to filoviruses under controlled conditions. By using concentrated, polyclonal IgG antibody from these survivors, we treated filovirus-infected NHPs with multiple doses administered over the clinical phase of disease. In the first study, Marburg virus (MARV)-infected NHPs were treated 15 to 30 min postexposure with virus-specific IgG, with additional treatments on days 4 and 8 postexposure. The postexposure IgG treatment was completely protective, with no signs of disease or detectable viremia. MARV-specific IgM antibody responses were generated, and all macaques survived rechallenge with MARV, suggesting that they generated an immune response to virus replication. In the next set of studies, NHPs were infected with MARV or Ebola virus (EBOV), and treatments were delayed 48 h, with additional treatments on days 4 and 8 postexposure. The delayed treatments protected both MARV- and EBOV-challenged NHPs. In both studies, two of the three IgG-treated NHPs had no clinical signs of illness, with the third NHP developing mild and delayed signs of disease followed by full recovery. These studies clearly demonstrate that postexposure antibody treatments can protect NHPs and open avenues for filovirus therapies for human use using established Food and Drug Administration-approved polyclonal or monoclonal antibody technologies.


Nature Structural & Molecular Biology | 2011

A shared structural solution for neutralizing ebolaviruses

João M. Dias; Ana I. Kuehne; Dafna M. Abelson; Shridhar Bale; Anthony C. Wong; Peter Halfmann; Majidat Muhammad; Marnie L. Fusco; Samantha E. Zak; Eugene Kang; Yoshihiro Kawaoka; Kartik Chandran; John M. Dye; Erica Ollmann Saphire

Sudan virus (genus Ebolavirus) is lethal, yet no monoclonal antibody is known to neutralize it. We here describe antibody 16F6 that neutralizes Sudan virus and present its structure bound to the trimeric viral glycoprotein. Unexpectedly, the 16F6 epitope overlaps that of KZ52, the only other antibody against the GP1,2 core to be visualized to date. Furthermore, both antibodies against this crucial epitope bridging GP1–GP2 neutralize at a post-internalization step—probably fusion.


Journal of Virology | 2013

Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Protects Nonhuman Primates from Intramuscular and Aerosol Challenge with Ebolavirus

Andrew S. Herbert; Ana I. Kuehne; James F. Barth; Ramon A. Ortiz; Donald K. Nichols; Samantha E. Zak; Spencer W. Stonier; Majidat Muhammad; Russell R. Bakken; Laura I. Prugar; Gene G. Olinger; Jennifer L. Groebner; John S. Lee; William D. Pratt; Max Custer; Kurt I. Kamrud; Jonathan F. Smith; Mary Kate Hart; John M. Dye

ABSTRACT There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.


The Journal of Infectious Diseases | 2015

Interferon α/β Receptor–Deficient Mice as a Model for Ebola Virus Disease

Jennifer M. Brannan; Jeffery W. Froude; Laura I. Prugar; Russell R. Bakken; Samantha E. Zak; Sharon P. Daye; Catherine E. Wilhelmsen; John M. Dye

A major obstacle in ebolavirus research is the lack of a small-animal model for Sudan virus (SUDV), as well as other wild-type (WT) ebolaviruses. Here, we expand on research by Bray and by Lever et al suggesting that WT ebolaviruses are pathogenic in mice deficient for the type 1 interferon (IFN) α/β receptor (IFNα/βR-/-). We examined the disease course of several WT ebolaviruses: Boneface (SUDV/Bon) and Gulu variants of SUDV, Ebola virus (EBOV), Bundibugyo virus (BDBV), Taï Forest virus, and Reston virus (RESTV). We determined that exposure to WT SUDV or EBOV results in reproducible signs of disease in IFNα/βR-/- mice, as measured by weight loss and partial lethality. Vaccination with the SUDV or EBOV glycoprotein (GP)-expressing Venezuelan equine encephalitis viral replicon particle vaccine protected these mice from SUDV/Bon and EBOV challenge, respectively. Treatment with SUDV- or EBOV-specific anti-GP antibodies protected mice from challenge when delivered 1-3 days after infection. Serial sampling experiments revealed evidence of disseminated intravascular coagulation in the livers of mice infected with the Boneface variant of SUDV, EBOV, and BDBV. Taken together, these data solidify the IFNα/βR-/- mouse as an important and useful model for the study of WT EBOV disease.


ACS Chemical Biology | 2014

Synthetic Antibodies with a Human Framework That Protect Mice from Lethal Sudan Ebolavirus Challenge

Gang Chen; Jayne F. Koellhoffer; Samantha E. Zak; Julia C. Frei; Nina Liu; Hua Long; Wei Ye; Kaajal Nagar; Guohua Pan; Kartik Chandran; John M. Dye; Sachdev S. Sidhu; Jonathan R. Lai

The ebolaviruses cause severe and rapidly progressing hemorrhagic fever. There are five ebolavirus species; although much is known about Zaire ebolavirus (EBOV) and its neutralization by antibodies, little is known about Sudan ebolavirus (SUDV), which is emerging with increasing frequency. Here we describe monoclonal antibodies containing a human framework that potently inhibit infection by SUDV and protect mice from lethal challenge. The murine antibody 16F6, which binds the SUDV envelope glycoprotein (GP), served as the starting point for design. Sequence and structural alignment revealed similarities between 16F6 and YADS1, a synthetic antibody with a humanized scaffold. A focused phage library was constructed and screened to impart 16F6-like recognition properties onto the YADS1 scaffold. A panel of 17 antibodies were characterized and found to have a range of neutralization potentials against a pseudotype virus infection model. Neutralization correlated with GP binding as determined by ELISA. Two of these clones, E10 and F4, potently inhibited authentic SUDV and conferred protection and memory immunity in mice from lethal SUDV challenge. E10 and F4 were further shown to bind to the same epitope on GP as 16F6 with comparable affinities. These antibodies represent strong immunotherapeutic candidates for treatment of SUDV infection.


Scientific Reports | 2016

Bispecific Antibody Affords Complete Post-Exposure Protection of Mice from Both Ebola (Zaire) and Sudan Viruses.

Julia C. Frei; Elisabeth K. Nyakatura; Samantha E. Zak; Russell R. Bakken; Kartik Chandran; John M. Dye; Jonathan R. Lai

Filoviruses (Ebola and Marburg) cause severe hemorrhagic fever. There are five species of ebolavirus; among these, the Ebola (Zaire) and Sudan viruses (EBOV and SUDV, respectively) are highly pathogenic and have both caused recurring, large outbreaks. However, the EBOV and SUDV glycoprotein (GP) sequences are 45% divergent and thus antigenically distinct. Few antibodies with cross-neutralizing properties have been described to date. We used antibody engineering to develop novel bispecific antibodies (Bis-mAbs) that are cross-reactive toward base epitopes on GP from EBOV and SUDV. These Bis-mAbs exhibit potent neutralization against EBOV and SUDV GP pseudotyped viruses as well as authentic pathogens, and confer a high degree (in one case 100%) post-exposure protection of mice from both viruses. Our studies show that a single agent that targets the GP base epitopes is sufficient for protection in mice; such agents could be included in panfilovirus therapeutic antibody cocktails.


mAbs | 2017

Generation and characterization of protective antibodies to Marburg virus

Jeffrey W. Froude; Thibaut Pelat; Sebastian Miethe; Samantha E. Zak; Anna Z. Wec; Kartik Chandran; Jennifer M. Brannan; Russell R. Bakken; Michael Hust; Philippe Thullier; John M. Dye

ABSTRACT Marburg virus (MARV) and Ebola virus (EBOV) have been a source of epidemics and outbreaks for several decades. We present here the generation and characterization of the first protective antibodies specific for wild-type MARV. Non-human primates (NHP), cynomolgus macaques, were immunized with viral-replicon particles expressing the glycoproteins (GP) of MARV (Ci67 isolate). An antibody fragment (single-chain variable fragment, scFv) phage display library was built after four immunogen injections, and screened against the GP1-649 of MARV. Sequencing of 192 selected clones identified 18 clones with distinct VH and VL sequences. Four of these recombinant antibodies (R4A1, R4B11, R4G2, and R3F6) were produced in the scFv-Fc format for in vivo studies. Mice that were challenged with wild-type Marburg virus (Ci67 isolate) receiving 100 µg of scFv-Fc on days −1, 1 and 3 demonstrated protective efficacies ranging from 75–100%. The amino-acid sequences of the scFv-Fcs are similar to those of their human germline counterparts, sharing an identity ranging between 68 and 100% to human germline immunoglobulin. These results demonstrate for the first time that recombinant antibodies offer protection against wild-type MARV, and suggest they may be promising candidates for further therapeutic development especially due to their human homology.


Journal of Biological Chemistry | 2018

Design and evaluation of bi- and trispecific antibodies targeting multiple filovirus glycoproteins

Elisabeth K. Nyakatura; Samantha E. Zak; Anna Z. Wec; Daniel Hofmann; Sergey Shulenin; Russell R. Bakken; M. Javad Aman; Kartik Chandran; John M. Dye; Jonathan R. Lai

Filoviruses (family Filoviridae) include five ebolaviruses and Marburg virus. These pathogens cause a rapidly progressing and severe viral disease with high mortality rates (generally 30–90%). Outbreaks of filovirus disease are sporadic and, until recently, were limited to less than 500 cases. However, the 2013–2016 epidemic in western Africa, caused by Ebola virus (EBOV), illustrated the potential of filovirus outbreaks to escalate to a much larger scale (over 28,000 suspected cases). mAbs against the envelope glycoprotein represent a promising therapeutic platform for managing filovirus infections. However, mAbs that exhibit neutralization or protective properties against multiple filoviruses are rare. Here we examined a panel of engineered bi- and trispecific antibodies, in which variable domains of mAbs that target epitopes from multiple filoviruses were combined, for their capacity to neutralize viral infection across filovirus species. We found that bispecific combinations targeting EBOV and Sudan virus (another ebolavirus), provide potent cross-neutralization and protection in mice. Furthermore, trispecific combinations, targeting EBOV, Sudan virus, and Marburg virus, exhibited strong neutralization potential against all three viruses. These results provide important insights into multispecific antibody engineering against filoviruses and will inform future immunotherapeutic discoveries.


Immunology Letters | 2017

Mechanistic and Fc requirements for inhibition of Sudan virus entry and in vivo protection by a synthetic antibody

Daniel Hofmann; Samantha E. Zak; Elisabeth K. Nyakatura; Eva Mittler; Russell R. Bakken; Kartik Chandran; John M. Dye; Jonathan R. Lai

The Sudan virus (SUDV), an ebolavirus, causes severe hemorrhagic fever with human case fatality rates of ∼50%. Previous work from our lab demonstrated the synthetic antibody F4 potently inhibits viral entry and protects against lethal virus challenge in mice [Chen et al., ACS Chem. Biol., 2014, 9, 2263-2273]. Here, we explore mechanistic requirements as well as contribution of the Fc region and function on neutralization and in vivo protection. Live cell imaging demonstrates that the antibody colocalizes with vesicular stomatitis virus particles containing the Sudan virus glycoprotein (VSV-GPSUDV) and that the antibody is rapidly degraded within cellular endosomes. A viral escape mutant contained substitutions on the N-heptad repeat (NHR) segment of GP2, the fusion subunit. Truncation studies indicated that the size of the Fc impacts virus neutralization potential. Finally, we examined the protective efficacy of Fc-null mutants in mice, and found that Fc function was not required for high levels of protection. Altogether, these results indicate that neutralization of SUDV GP-mediated cell entry likely involves blockade of viral membrane fusion within endosomes, and that inhibition of viral entry is the likely mechanism of in vivo protection.


Viruses | 2018

Post-Exposure Protection in Mice against Sudan Virus by a Two Antibody Cocktail

Jeffrey W. Froude; Andrew S. Herbert; Thibaut Pelat; Sebastian Miethe; Samantha E. Zak; Jennifer M. Brannan; Russell R. Bakken; Alexander Steiner; Gang Yin; Trevor J. Hallam; Aaron Sato; Michael Hust; Philippe Thullier; John M. Dye

Sudan virus (SUDV) and Ebola viruses (EBOV) are both members of the Ebolavirus genus and have been sources of epidemics and outbreaks for several decades. We present here the generation and characterization of cross-reactive antibodies to both SUDV and EBOV, which were produced in a cell-free system and protective against SUDV in mice. A non-human primate, cynomolgus macaque, was immunized with viral-replicon particles expressing the glycoprotein of SUDV-Boniface (8A). Two separate antibody fragment phage display libraries were constructed after four immunogen injections. Both libraries were screened first against the SUDV and a second library was cross-selected against EBOV-Kikwit. Sequencing of 288 selected clones from the two distinct libraries identified 58 clones with distinct VH and VL sequences. Many of these clones were cross-reactive to EBOV and SUDV and able to neutralize SUDV. Three of these recombinant antibodies (X10B1, X10F3, and X10H2) were produced in the scFv-Fc format utilizing a cell-free production system. Mice that were challenged with SUDV-Boniface receiving 100µg of the X10B1/X10H2 scFv-Fc combination 6 and 48-h post-exposure demonstrated partial protection individually and complete protection as a combination. The data herein suggests these antibodies may be promising candidates for further therapeutic development.

Collaboration


Dive into the Samantha E. Zak's collaboration.

Top Co-Authors

Avatar

John M. Dye

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Russell R. Bakken

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Kartik Chandran

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ana I. Kuehne

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Jonathan R. Lai

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Laura I. Prugar

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Majidat Muhammad

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Andrew S. Herbert

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Elisabeth K. Nyakatura

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

James F. Barth

Walter Reed Army Institute of Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge