Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan John Hatcher West is active.

Publication


Featured researches published by Ryan John Hatcher West.


Journal of Cell Biology | 2015

Rab8, POSH, and TAK1 regulate synaptic growth in a Drosophila model of frontotemporal dementia

Ryan John Hatcher West; Yubing Lu; Bruno Marie; Fen-Baio Gao; Sean T. Sweeney

Rab8, POSH, and TAK1 regulate synaptic growth responses, which suggests that recycling endosomes are key compartments for synaptic growth regulation in neurodegenerative processes.


Journal of Organic Chemistry | 2010

Synthesis and Characterization of BODIPY-α-Tocopherol: A Fluorescent Form of Vitamin E

Ryan John Hatcher West; Candace Panagabko; Jeffrey Atkinson

Fluorescent nitrobenzoxadiazole analogues of alpha-tocopherol (NBD-alpha-Tocs; lambda(ex) = 468 nm, lambda(em) = 527 nm) have been made previously to aid study of the intracellular location and transfer of vitamin E. However, these analogues are susceptible to photobleaching while under illumination for confocal microscopy as well as in in vitro FRET transfer assays. Here we report the synthesis of three fluorescent analogues of alpha-tocopherol incorporating the more robust dipyrrometheneboron difluoride (BODIPY) fluorophore. A BODIPY-linked chromanol should have no intervening polar functional groups that might interfere with binding to the hydrophobic binding site of the tocopherol transfer protein (alpha-TTP). A key step in bringing the two ring systems together was a metathesis reaction of vinyl chromanol and an alkenyl BODIPY. An o-tolyl containing second generation Grubbs catalyst was identified as the best catalyst for effecting the metathesis without detectable alkene isomerization, which when it occurred produced a mixture of chain lengths in the alkyl linker. C8-BODIPY-alpha-Toc 10c (lambda(ex) = 507 nm, lambda(em) = 511 nm, epsilon(507) = 83,000 M(-1) cm(-1)) having an eight-carbon chain between the chromanol and fluorophore, had the highest affinity for alpha-TTP (K(d) = 94 +/- 3 nM) and bound specifically as it could not be displaced with cholesterol.


Autophagy | 2012

Oxidative stress and autophagy: Mediators of synapse growth?

Ryan John Hatcher West; Sean T. Sweeney

Many neurodegenerative conditions have oxidative stress burdens where levels of reactive oxygen species (ROS) exceed the antioxidant capacity of the neuron. ROS can induce wide-ranging damage in a cell and this is prevented by the activation of antioxidant responses including autophagy. Jun-kinase (JNK) is stimulated by ROS and mediates antioxidant responses via the activation of the transcriptional activators Fos and Jun (AP-1). In recently published work we examined Drosophila mutants with overgrown larval neuromuscular synapses, mutants that also show all the hallmarks of lysosomal storage disease (LSD). We find that we can reverse this synaptic overgrowth by reducing the oxidative stress burden, and that synaptic overgrowth is mediated by autophagy and JNK-AP-1 activity. We also examined animals defective for protection from oxidative stress and found that they too have synapse overgrowth generated by JNK-AP-1 activity. Treatment of larvae with a known ROS-generating toxin, paraquat, yielded similar synaptic responses. The observations that oxidative stress responses, potentially acting through autophagy, can generate synaptic growth suggest that ROS may be a potent regulator of synapse size and function. These findings have intriguing implications for aging neurons, neurodegenerative conditions and the interpretation of metabolic demand during learning and memory.


Scientific Reports | 2015

Classification of Parkinson's Disease Genotypes in Drosophila Using Spatiotemporal Profiling of Vision.

Ryan John Hatcher West; Christopher J. H. Elliott; Alex R. Wade

Electrophysiological studies indicate altered contrast processing in some Parkinson’s Disease (PD) patients. We recently demonstrated that vision is altered in Drosophila PD models and hypothesised that different types of genetic and idiopathic PD may affect dopaminergic visual signalling pathways differently. Here we asked whether visual responses in Drosophila could be used to identify PD mutations. To mimic a clinical setting a range of flies was used. Young flies from four control lines were compared to three early-onset PD mutations (PINK1, DJ-1α and DJ-1β), and to two other neurodegenerative mutations, one in the fly LRRK2 orthologue (dLRRK) the other in eggroll, a model of general neurodegeneration in Drosophila. Stimuli were contrast reversing gratings spanning 64 spatiotemporal frequency combinations. We recorded the steady-state visually-evoked response amplitude across all combinations. We found that the pattern of neuronal responses differed between genotypes. Wild-type and early-onset PD flies formed separate clusters; the late-onset mutation is an outlier. Neuronal responses in early-onset PD flies were stronger than in wild-types. Multivariate pattern analysis grouped flies by PD/non-PD genotype with an accuracy >85%. We propose that machine learning algorithms may be useful in increasing the diagnostic specificity of human electrophysiological measurements in both animal models and PD patients.


Journal of Cell Science | 2015

Binding partners of the kinase domains in Drosophila obscurin and their effect on the structure of the flight muscle

Anja Katzemich; Ryan John Hatcher West; Atsushi Fukuzawa; Sean T. Sweeney; Mathias Gautel; John C. Sparrow; Belinda Bullard

ABSTRACT Drosophila obscurin (Unc-89) is a titin-like protein in the M-line of the muscle sarcomere. Obscurin has two kinase domains near the C-terminus, both of which are predicted to be inactive. We have identified proteins binding to the kinase domains. Kinase domain 1 bound Bällchen (Ball, an active kinase), and both kinase domains 1 and 2 bound MASK (a 400-kDa protein with ankyrin repeats). Ball was present in the Z-disc and M-line of the indirect flight muscle (IFM) and was diffusely distributed in the sarcomere. MASK was present in both the M-line and the Z-disc. Reducing expression of Ball or MASK by siRNA resulted in abnormalities in the IFM, including missing M-lines and multiple Z-discs. Obscurin was still present, suggesting that the kinase domains act as a scaffold binding Ball and MASK. Unlike obscurin in vertebrate skeletal muscle, Drosophila obscurin is necessary for the correct assembly of the IFM sarcomere. We show that Ball and MASK act downstream of obscurin, and both are needed for development of a well defined M-line and Z-disc. The proteins have not previously been identified in Drosophila muscle. Summary: Obscurin is a titin-like protein in Drosophila muscle, which has two pseudokinase domains. These bind ligands essential for the correct assembly of the filament lattice.


Human Molecular Genetics | 2015

Identification of dietary alanine toxicity and trafficking dysfunction in a Drosophila model of hereditary sensory and autonomic neuropathy type 1

Matthew Oswald; Ryan John Hatcher West; Emyr Lloyd-Evans; Sean T. Sweeney

Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is characterized by a loss of distal peripheral sensory and motorneuronal function, neuropathic pain and tissue necrosis. The most common cause of HSAN1 is due to dominant mutations in serine palmitoyl-transferase subunit 1 (SPT1). SPT catalyses the condensation of serine with palmitoyl-CoA, the initial step in sphingolipid biogenesis. Identified mutations in SPT1 are known to both reduce sphingolipid synthesis and generate catalytic promiscuity, incorporating alanine or glycine into the precursor sphingolipid to generate a deoxysphingoid base (DSB). Why either loss of function in SPT1, or generation of DSBs should generate deficits in distal sensory function remains unclear. To address these questions, we generated a Drosophila model of HSAN1. Expression of dSpt1 bearing a disease-related mutation induced morphological deficits in synapse growth at the larval neuromuscular junction consistent with a dominant-negative action. Expression of mutant dSpt1 globally was found to be mildly toxic, but was completely toxic when the diet was supplemented with alanine, when DSBs were observed in abundance. Expression of mutant dSpt1 in sensory neurons generated developmental deficits in dendritic arborization with concomitant sensory deficits. A membrane trafficking defect was observed in soma of sensory neurons expressing mutant dSpt1, consistent with endoplasmic reticulum (ER) to Golgi block. We found that we could rescue sensory function in neurons expressing mutant dSpt1 by co-expressing an effector of ER–Golgi function, Rab1 suggesting compromised ER function in HSAN1 affected dendritic neurons. Our Drosophila model identifies a novel strategy to explore the pathological mechanisms of HSAN1.


Journal of Neurophysiology | 2018

Abnormal visual gain control and excitotoxicity in early-onset Parkinson's disease Drosophila models

Marc M. Himmelberg; Ryan John Hatcher West; Christopher J. H. Elliott; Alex R. Wade

The excitotoxic theory of Parkinson’s disease (PD) hypothesizes that a pathophysiological degeneration of dopaminergic neurons stems from neural hyperactivity at early stages of disease, leading to mitochondrial stress and cell death. Recent research has harnessed the visual system of Drosophila PD models to probe this hypothesis. Here, we investigate whether abnormal visual sensitivity and excitotoxicity occur in early-onset PD (EOPD) Drosophila models DJ-1αΔ72, DJ-1βΔ93, and PINK15. We used an electroretinogram to record steady-state visually evoked potentials driven by temporal contrast stimuli. At 1 day of age, all EOPD mutants had a twofold increase in response amplitudes compared with w̄ controls. Furthermore, we found that excitotoxicity occurs in older EOPD models after increased neural activity is triggered by visual stimulation. In an additional analysis, we used a linear discriminant analysis to test whether there were subtle variations in neural gain control that could be used to classify Drosophila into their correct age and genotype. The discriminant analysis was highly accurate, classifying Drosophila into their correct genotypic class at all age groups at 50–70% accuracy (20% chance baseline). Differences in cellular processes link to subtle alterations in neural network operation in young flies, all of which lead to the same pathogenic outcome. Our data are the first to quantify abnormal gain control and excitotoxicity in EOPD Drosophila mutants. We conclude that EOPD mutations may be linked to more sensitive neuronal signaling in prodromal animals that may cause the expression of PD symptomologies later in life. NEW & NOTEWORTHY Steady-state visually evoked potential response amplitudes to multivariate temporal contrast stimuli were recorded in early-onset PD Drosophila models. Our data indicate that abnormal gain control and a subsequent visual loss occur in these PD mutants, supporting a broader excitotoxicity hypothesis in genetic PD. Furthermore, linear discriminant analysis could accurately classify Drosophila into their correct genotype at different ages throughout their lifespan. Our results suggest increased neural signaling in prodromal PD patients.


The Journal of Comparative Neurology | 2018

Sphingolipids regulate neuromuscular synapse structure and function in Drosophila

Ryan John Hatcher West; Laura Briggs; Maria Perona Fjeldstad; Richard R. Ribchester; Sean T. Sweeney

Sphingolipids are found in abundance at synapses and have been implicated in regulation of synapse structure, function, and degeneration. Their precise role in these processes, however, remains obscure. Serine Palmitoyl‐transferase (SPT) is the first enzymatic step for synthesis of sphingolipids. Analysis of the Drosophila larval neuromuscular junction (NMJ) revealed mutations in the SPT enzyme subunit, lace/SPTLC2 resulted in deficits in synaptic structure and function. Although NMJ length is normal in lace mutants, the number of boutons per NMJ is reduced to ∼50% of the wild type number. Synaptic boutons in lace mutants are much larger but show little perturbation to the general ultrastructure. Electrophysiological analysis of lace mutant synapses revealed strong synaptic transmission coupled with predominance of depression over facilitation. The structural and functional phenotypes of lace mirrored aspects of Basigin (Bsg), a small Ig‐domain adhesion molecule also known to regulate synaptic structure and function. Mutant combinations of lace and Bsg generated large synaptic boutons, while lace mutants showed abnormal accumulation of Bsg at synapses, suggesting that Bsg requires sphingolipid to regulate structure of the synapse. In support of this, we found Bsg to be enriched in lipid rafts. Our data points to a role for sphingolipids in the regulation and fine‐tuning of synaptic structure and function while sphingolipid regulation of synaptic structure may be mediated via the activity of Bsg.


Movement Disorders | 2018

A perceptive plus in Parkinson's disease

Marc M. Himmelberg; Ryan John Hatcher West; Alex R. Wade; Christopher J. H. Elliott

The puzzle of Parkinson’s disease (PD) is particularly elusive, but the next part of the picture is appearing, and it is a curious one: a tale of men, mice, and flies. Recently, Beard and colleagues reported that people who went on to develop PD tended to have jobs with higher socioeconomic status. Their study of> 12 million Americans highlighted more than 110,000 deaths from PD, with excess numbers of workers in community services (48%), educational (46%), legal (40%) and the sciences (33%). Such jobs may be demanding of deeper thought, good discrimination, and quick judgments. In a second study of >4.5 million people from the Swedish census, those with lower socioeconomic status had a lower PD incidence. Although this may appear (at first sight) far-fetched, advantages in cognition in people at risk of PD are predicted from our studies of young PD-mimic flies. These have faster, stronger visual responses when the flies are young; however, in old age they show a loss of response and neurodegeneration. This model is noteworthy because ever since the time of Cajal, the homology of vertebrate and fly visual systems has been recognized, with many similarities at the neural circuit, computational, and developmental levels. Crucially, both flies and vertebrates use dopamine for retinal gain control. Furthermore, it is widely accepted that the extra demand for energy is a major cause of neurodegeneration in PD, so that the loss of visual gain control in young flies will lead to increased visual responses, requiring more Adenosine Triphosphate to pump ions and maintain synaptic transmission. Increased visual processing, and possibly faster neural signaling, as a result of deficits in retinal dopamine signaling may provide people at risk of PD with advantages in younger life, which impact before the later neurodegeneration. They may be more suited to jobs with higher socioeconomic status, both at interview and in the daily routine. This would explain the new observations. Furthermore, PD-linked mutations have been around since prehistoric times and may therefore have had a selective advantage for young people encountering situations demanding rapid responses, for example, escape or hunting activities.


Human Molecular Genetics | 2018

The pro-apoptotic JNK scaffold POSH/SH3RF1 mediates CHMP2BIntron5-associated toxicity in animal models of frontotemporal dementia

Ryan John Hatcher West; Christopher Ugbode; Fen-Biao Gao; Sean T. Sweeney

Abstract Frontotemporal dementia (FTD) is one of the most prevalent forms of early-onset dementia. However, the pathological mechanisms driving neuronal atrophy in FTD remain poorly understood. Here we identify a conserved role for the novel pro-apoptotic protein plenty of SH3s (POSH)/SH3 domain containing ring finger 1 in mediating neuropathology in Drosophila and mammalian models of charged multivesicular body protein 2B (CHMP2BIntron5) associated FTD. Aberrant, AKT dependent, accumulation of POSH was observed throughout the nervous system of both Drosophila and mice expressing CHMP2BIntron5. Knockdown of POSH was shown to be neuroprotective and sufficient to alleviate aberrant neuronal morphology, behavioral deficits and premature-lethality in Drosophila models, as well as dendritic collapse and cell death in CHMP2BIntron5expressing rat primary neurons. POSH knockdown also ameliorated elevated markers of Jun N-terminal kinase and apoptotic cascades in both Drosophila and mammalian models. This study provides the first characterization of POSH as a potential component of an FTD neuropathology, identifying a novel apoptotic pathway with relevance to the FTD spectrum.

Collaboration


Dive into the Ryan John Hatcher West's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge