Ryan T. Hill
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ryan T. Hill.
Science | 2012
Cristian Ciracì; Ryan T. Hill; Jack J. Mock; Yaroslav A. Urzhumov; Antonio I. Fernández-Domínguez; Stefan A. Maier; J. B. Pendry; Ashutosh Chilkoti; David R. Smith
Boundaries on Plasmonic Excitations The localization of optical fields within a metal nanostructure can achieve strengths that are orders of magnitude greater than that of the incident field. This focusing and enhancement of the optical field maybe useful in sensing, nonlinear optics, and optical scattering applications. In probing the properties of metallic nanoparticles, Ciracì et al. (p. 1072; see the cover) show that the enhancement is limited by the electronic response of the metal, which has implications for the ultimate performance of nanophotonic systems. The nonlocal dielectric response of metals places a fundamental limit on the performance of plasmonic optical devices. Metals support surface plasmons at optical wavelengths and have the ability to localize light to subwavelength regions. The field enhancements that occur in these regions set the ultimate limitations on a wide range of nonlinear and quantum optical phenomena. We found that the dominant limiting factor is not the resistive loss of the metal, but rather the intrinsic nonlocality of its dielectric response. A semiclassical model of the electronic response of a metal places strict bounds on the ultimate field enhancement. To demonstrate the accuracy of this model, we studied optical scattering from gold nanoparticles spaced a few angstroms from a gold film. The bounds derived from the models and experiments impose limitations on all nanophotonic systems.
Nature | 2012
Antoine Moreau; Cristian Ciracì; Jack J. Mock; Ryan T. Hill; Qiang Wang; Benjamin J. Wiley; Ashutosh Chilkoti; David R. Smith
Efficient and tunable absorption is essential for a variety of applications, such as designing controlled-emissivity surfaces for thermophotovoltaic devices, tailoring an infrared spectrum for controlled thermal dissipation and producing detector elements for imaging. Metamaterials based on metallic elements are particularly efficient as absorbing media, because both the electrical and the magnetic properties of a metamaterial can be tuned by structured design. So far, metamaterial absorbers in the infrared or visible range have been fabricated using lithographically patterned metallic structures, making them inherently difficult to produce over large areas and hence reducing their applicability. Here we demonstrate a simple method to create a metamaterial absorber by randomly adsorbing chemically synthesized silver nanocubes onto a nanoscale-thick polymer spacer layer on a gold film, making no effort to control the spatial arrangement of the cubes on the film. We show that the film-coupled nanocubes provide a reflectance spectrum that can be tailored by varying the geometry (the size of the cubes and/or the thickness of the spacer). Each nanocube is the optical analogue of a grounded patch antenna, with a nearly identical local field structure that is modified by the plasmonic response of the metal’s dielectric function, and with an anomalously large absorption efficiency that can be partly attributed to an interferometric effect. The absorptivity of large surface areas can be controlled using this method, at scales out of reach of lithographic approaches (such as electron-beam lithography) that are otherwise required to manipulate matter on the nanoscale.
Nano Letters | 2008
Jack J. Mock; Ryan T. Hill; Aloyse Degiron; Stefan Zauscher; Ashutosh Chilkoti; David R. Smith
We present an experimental analysis of the plasmonic scattering properties of gold nanoparticles controllably placed nanometers away from a gold metal film. We show that the spectral response of this system results from the interplay between the localized plasmon resonance of the nanoparticle and the surface plasmon polaritons of the gold film, as previously predicted by theoretical studies. In addition, we report that the metal film induces a polarization to the single nanoparticle light scattering, resulting in a doughnut-shaped point spread function when imaged in the far-field. Both the spectral response and the polarization effects are highly sensitive to the nanoparticle-film separation distance. Such a system shows promise in potential biometrology and diagnostic devices.
Nano Letters | 2010
Ryan T. Hill; Jack J. Mock; Yaroslav A. Urzhumov; David S. Sebba; Steven J. Oldenburg; Shiuan Yeh Chen; Anne A. Lazarides; Ashutosh Chilkoti; David R. Smith
The strongly enhanced and localized optical fields that occur within the gaps between metallic nanostructures can be leveraged for a wide range of functionality in nanophotonic and optical metamaterial applications. Here, we introduce a means of precise control over these nanoscale gaps through the application of a molecular spacer layer that is self-assembled onto a gold film, upon which gold nanoparticles (NPs) are deposited electrostatically. Simulations using a three-dimensional finite element model and measurements from single NPs confirm that the gaps formed by this process, between the NP and the gold film, are highly reproducible transducers of surface-enhanced resonant Raman scattering. With a spacer layer of roughly 1.6 nm, all NPs exhibit a strong Raman signal that decays rapidly as the spacer layer is increased.
Nano Letters | 2013
J. Britt Lassiter; Felicia McGuire; Jack J. Mock; Cristian Ciracì; Ryan T. Hill; Benjamin J. Wiley; Ashutosh Chilkoti; David R. Smith
A metallic nanoparticle positioned over a metal film offers great advantages as a highly controllable system relevant for probing field-enhancement and other plasmonic effects. Because the size and shape of the gap between the nanoparticle and film can be controlled to subnanometer precision using relatively simple, bottom-up fabrication approaches, the film-coupled nanoparticle geometry has recently been applied to enhancing optical fields, accessing the quantum regime of plasmonics, and the design of surfaces with controlled reflectance. In the present work, we examine the plasmon modes associated with a silver nanocube positioned above a silver or gold film, separated by an organic, dielectric spacer layer. The film-coupled nanocube is of particular interest due to the formation of waveguide cavity-like modes between the nanocube and film. These modes impart distinctive scattering characteristics to the system that can be used in the creation of controlled reflectance surfaces and other applications. We perform both experimental spectroscopy and numerical simulations of individual nanocubes positioned over a metal film, finding excellent agreement between experiment and simulation. The waveguide mode description serves as a starting point to explain the optical properties observed.
Nano Letters | 2012
Jack J. Mock; Ryan T. Hill; Yu-Ju Tsai; Ashutosh Chilkoti; David R. Smith
The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nanogap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme similar to that used to excite the surface plasmon resonance (SPR) of a thin metallic film; however, in the present system, the light is used to probe the highly sensitive distance-dependent LSPR of the gaps between NPs and film rather than the delocalized SPR of the film. We show that the SPR and LSPR spectral contributions can be readily distinguished, and we compare the sensitivities of both modes to displacements in the average gap between a collection of NPs and the gold film. The distance by which the NPs are suspended in solution above the gold film is fixed via a thin molecular spacer layer and can be further modulated by subjecting the NPs to a quasistatic electric field. The observed LSPR spectral shifts triggered by the applied voltage can be correlated with angstrom scale displacements of the NPs, suggesting the potential for chip-scale or flow-cell plasmonic nanoruler devices with extreme sensitivity.
ACS Nano | 2012
Ryan T. Hill; Jack J. Mock; Angus Hucknall; Scott D. Wolter; Nan Marie Jokerst; David R. Smith; Ashutosh Chilkoti
We demonstrate a plasmon nanoruler using a coupled film nanoparticle (film-NP) format that is well-suited for investigating the sensitivity extremes of plasmonic coupling. Because it is relatively straightforward to functionalize bulk surface plasmon supporting films, such as gold, we are able to precisely control plasmonic gap dimensions by creating ultrathin molecular spacer layers on the gold films, on top of which we immobilize plasmon resonant nanoparticles (NPs). Each immobilized NP becomes coupled to the underlying film and functions as a plasmon nanoruler, exhibiting a distance-dependent resonance red shift in its peak plasmon wavelength as it approaches the film. Due to the uniformity of response from the film-NPs to separation distance, we are able to use extinction and scattering measurements from ensembles of film-NPs to characterize the coupling effect over a series of very short separation distances-ranging from 5 to 20 Å-and combine these measurements with similar data from larger separation distances extending out to 27 nm. We find that the film-NP plasmon nanoruler is extremely sensitive at very short film-NP separation distances, yielding spectral shifts as large as 5 nm for every 1 Å change in separation distance. The film-NP coupling at extremely small spacings is so uniform and reliable that we are able to usefully probe gap dimensions where the classical Drude model of the conducting electrons in the metals is no longer descriptive; for gap sizes smaller than a few nanometers, either quantum or semiclassical models of the carrier response must be employed to predict the observed wavelength shifts. We find that, despite the limitations, large field enhancements and extreme sensitivity persist down to even the smallest gap sizes.
ACS Nano | 2010
Shiuan Yeh Chen; Jack J. Mock; Ryan T. Hill; Ashutosh Chilkoti; David R. Smith; Anne A. Lazarides
Surface plasmons supported by metal nanoparticles are perturbed by coupling to a surface that is polarizable. Coupling results in enhancement of near fields and may increase the scattering efficiency of radiative modes. In this study, we investigate the Rayleigh and Raman scattering properties of gold nanoparticles functionalized with cyanine deposited on silicon and quartz wafers and on gold thin films. Dark-field scattering images display red shifting of the gold nanoparticle plasmon resonance and doughnut-shaped scattering patterns when particles are deposited on silicon or on a gold film. The imaged radiation patterns and individual particle spectra reveal that the polarizable substrates control both the orientation and brightness of the radiative modes. Comparison with simulation indicates that, in a particle-surface system with a fixed junction width, plasmon band shifts are controlled quantitatively by the permittivity of the wafer or the film. Surface-enhanced resonance Raman scattering (SERRS) spectra and images are collected from cyanine on particles on gold films. SERRS images of the particles on gold films are doughnut-shaped as are their Rayleigh images, indicating that the SERRS is controlled by the polarization of plasmons in the antenna nanostructures. Near-field enhancement and radiative efficiency of the antenna are sufficient to enable Raman scattering cyanines to function as gap field probes. Through collective interpretation of individual particle Rayleigh spectra and spectral simulations, the geometric basis for small observed variations in the wavelength and intensity of plasmon resonant scattering from individual antenna on the three surfaces is explained.
Biointerphases | 2009
Angus Hucknall; Andrew J. Simnick; Ryan T. Hill; Ashutosh Chilkoti; Andres Garcia; Matthew S. Johannes; Robert L. Clark; Stefan Zauscher; Buddy D. Ratner
In this article, the authors describe new approaches to synthesize and pattern surfaces with poly[oligo(ethylene glycol) methyl methacrylate] (POEGMA) polymer brushes synthesized by surface-initiated atom transfer radical polymerization. These patterned coatings confer “nonfouling” properties protein and cell resistance—to the surface in a biological milieu. The versatile routes for the synthesis of POEGMA demonstrated here offer clear advantages over other techniques previously used in terms of their simplicity, reliability, and ability to pattern large-area substrates. They also demonstrate that POEGMA polymer brushes can be patterned directly by photolithography, plasma ashing, and reactive ion etching to create patterns at the micro- and nanoscale over large areas with high throughput and repeatability, while preserving the protein and cell resistance of the POEGMA brush.
Optics Express | 2010
Nathan J. Jenness; Ryan T. Hill; Angus Hucknall; Ashutosh Chilkoti; Robert L. Clark
We demonstrate a diffractive maskless lithographic system that is capable of rapidly performing both serial and single-shot micropatterning. Utilizing the diffractive properties of phase holograms displayed on a spatial light modulator, arbitrary intensity distributions were produced to form two and three dimensional micropatterns/structures in a variety of substrates. A straightforward graphical user interface was implemented to allow users to load templates and change patterning modes within the span of a few minutes. A minimum resolution of ~700 nm is demonstrated for both patterning modes, which compares favorably to the 232 nm resolution limit predicted by the Rayleigh criterion. The presented method is rapid and adaptable, allowing for the parallel fabrication of microstructures in photoresist as well as the fabrication of protein microstructures that retain functional activity.