Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryo Fukumori is active.

Publication


Featured researches published by Ryo Fukumori.


Journal of Neuroscience Research | 2009

Possible Protection by Notoginsenoside R1 against Glutamate Neurotoxicity Mediated by N-methyl-D-aspartate Receptors Composed of an NR1/NR2B Subunit Assembly

Bin Gu; Noritaka Nakamichi; Wensheng Zhang; Yukary Nakamura; Yuki Kambe; Ryo Fukumori; Kazuhiro Takuma; Kiyofumi Yamada; Takeshi Takarada; Hideo Taniura; Yukio Yoneda

Notoginsenoside R1 (NTR1) is the main active ingredient in Panax notoginseng, a herbal medicine widely used in Asia for years. The purpose of this study was to investigate pharmacological properties of NTR1 on neurotoxicity of glutamate (Glu) in primary cultured mouse cortical neurons along with its possible mechanism of action. Wefound that NTR1 significantly protected neurons from the loss of cellular viability caused by brief exposure to 10 μM Glu for 1 hr in a dose‐dependent manner at concentrations from 0.1 to 10 μM, without affecting the viability alone. NTR1 significantly inhibited the increased number of cells positive to propidium iodide (PI) staining, increase of intracellular free Ca2+ ions, overproduction of intracellular reactive oxygen species, and depolarization of mitochondrial membrane potential in cultured neurons exposed to Glu, in addition to blocking decreased Bcl‐2 and increased Bax expression levels. We further evaluated the target site at which NTR1 protects neurons from Glu toxicity by using the acquired expression strategy of N‐methyl‐D‐aspartate (NMDA) receptor subunits in human embryonic kidney 293 cells. We found that 10 μM NTR1 protected NR1/NR2B subunit expressing cells from cell death by 100 μM NMDA, but not cells expressing NR1/NR2A subunits, when determined by PI staining. These results suggest that NTR1 may preferentially protect neurons from Glu excitotoxicity mediated by NMDA receptor composed of an NR1/NR2B subunit assembly in the brain.


PLOS ONE | 2012

Promoted Neuronal Differentiation after Activation of Alpha4/Beta2 Nicotinic Acetylcholine Receptors in Undifferentiated Neural Progenitors

Takeshi Takarada; Noritaka Nakamichi; Seiya Kitajima; Ryo Fukumori; Ryota Nakazato; Nguyen Quynh Le; Yeong Hun Kim; Koichi Fujikawa; Miki Kou; Yukio Yoneda

Background Neural progenitor is a generic term used for undifferentiated cell populations of neural stem, neuronal progenitor and glial progenitor cells with abilities for proliferation and differentiation. We have shown functional expression of ionotropic N-methyl-D-aspartate (NMDA) and gamma-aminobutyrate type-A receptors endowed to positively and negatively regulate subsequent neuronal differentiation in undifferentiated neural progenitors, respectively. In this study, we attempted to evaluate the possible functional expression of nicotinic acetylcholine receptor (nAChR) by undifferentiated neural progenitors prepared from neocortex of embryonic rodent brains. Methodology/Principal Findings Reverse transcription polymerase chain reaction analysis revealed mRNA expression of particular nAChR subunits in undifferentiated rat and mouse progenitors prepared before and after the culture with epidermal growth factor under floating conditions. Sustained exposure to nicotine significantly inhibited the formation of neurospheres composed of clustered proliferating cells and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide reduction activity at a concentration range of 1 µM to 1 mM without affecting cell survival. In these rodent progenitors previously exposed to nicotine, marked promotion was invariably seen for subsequent differentiation into cells immunoreactive for a neuronal marker protein following the culture of dispersed cells under adherent conditions. Both effects of nicotine were significantly prevented by the heteromeric α4β2 nAChR subtype antagonists dihydro-β-erythroidine and 4-(5-ethoxy-3-pyridinyl)-N-methyl-(3E)-3-buten-1-amine, but not by the homomeric α7 nAChR subtype antagonist methyllycaconitine, in murine progenitors. Sustained exposure to nicotine preferentially increased the expression of Math1 among different basic helix-loop-helix proneural genes examined. In undifferentiated progenitors from embryonic mice defective of NMDA receptor subunit-1, nicotine was still effective in significantly inhibiting the proliferation. Conclusions/Significance Functional α4β2 nAChR subtype would be constitutively expressed to play a role in the mechanism underlying the determination of proliferation and subsequent differentiation fate into a neuronal lineage in association with preferential promotion of Math1 expression in undifferentiated neural progenitors of developing rodent neocortex independently of NMDA receptor activation.


Journal of Neuroscience Research | 2012

Possible neuroprotective property of nicotinic acetylcholine receptors in association with predominant upregulation of glial cell line-derived neurotrophic factor in astrocytes

Takeshi Takarada; Noritaka Nakamichi; Hirofumi Kawagoe; Masato Ogura; Ryo Fukumori; Ryota Nakazato; Koichi Fujikawa; Miki Kou; Yukio Yoneda

The underlying mechanisms are still unclear for the neuroprotective properties of nicotine to date, whereas we have shown functional expression of nicotinic acetylcholine receptors (nAChRs) responsible for the influx of extracellular Ca2+ in cultured rat cortical astrocytes. In this study, we investigated the possible involvement of astrocytic nAChRs in the neuroprotection by this agonist. Exposure to nicotine predominantly induced mRNA expression of glial cell line‐derived neurotrophic factor (GDNF) among the different neurotrophic factors examined in cultured astrocytes, in a manner sensitive to nAChR antagonists, nifedipine, and aCa2+ chelator. Nicotine significantly increased GDNF in a concentration‐dependent manner in cultured astrocytes but not in neurons or neural progenitors even at the highest concentration used. In cultured astrocytes, a transient increase was seen in the expression of mRNA and corresponding protein for GDNF during sustained exposure to nicotine for 24 hr. Cytotoxicity mediated by oxidative, calcium, mitochondrial, or endoplasmic reticulum stress was invariably protected against in cortical neurons cultured with conditioned medium from astrocytes previously exposed to nicotine, and preincubation with the anti‐GDNF antibody reduced the neuroprotection by conditioned medium from astrocytes exposed to nicotine. Intraperitoneal administration of nicotine transiently increased the number of cells immunoreactive for both GDNF and glial fibrillary acidic protein in rat cerebral cortex. These results suggest that astrocytic nAChRs play a role in the neuroprotection against different cytotoxins after predominant upregulation of GDNF expression through a mechanism relevant to the acceleration of extracellular Ca2+ influx in rat brain in a particular situation.


Arthritis & Rheumatism | 2011

NR2-reactive antibody decreases cell viability through augmentation of Ca2+ influx in systemic lupus erythematosus

Takahisa Gono; Takeshi Takarada; Ryo Fukumori; Yasushi Kawaguchi; Hirotaka Kaneko; Masanori Hanaoka; Yasuhiro Katsumata; Yukio Yoneda; Hisashi Yamanaka

OBJECTIVE Anti-N-methyl-D-aspartate (anti-NMDA) receptor subunit NR2-reactive antibody may play a crucial role in neuronal manifestations of systemic lupus erythematosus (SLE). However, how NR2-reactive antibody acts as a critical modulator of the NMDA receptor is unknown. This study was undertaken to investigate the biologic function of NR2-reactive antibody in patients with SLE. METHODS The study included 14 patients with SLE, 9 of whom had NR2-reactive antibody. We analyzed the effects of NR2-reactive antibody on cell viability and intracellular Ca(2+) level. We also investigated the efficacy of zinc as a modulator of the intracellular Ca(2+) level in the presence of NR2-reactive antibody. RESULTS There was a significant inverse correlation between the NR2-reactive antibody titer and cell viability (R(2) = 0.67, P < 0.0001; n = 23), and there was a significant association between the NR2-reactive antibody titer and the intracellular Ca(2+) level in NR1/NR2a-transfected HEK 293 cells (R(2) = 0.69, P < 0.0001). Intracellular Ca(2+) levels were significantly higher in cells incubated with IgG derived from NR2-reactive antibody-positive SLE patients than in those incubated with IgG derived from NR2-reactive antibody-negative SLE patients (P = 0.0002). The addition of zinc decreased the intracellular Ca(2+) level in a dose-dependent manner. NR2-reactive antibody-positive SLE IgG weakened the efficacy of zinc as a negative modulator of the intracellular Ca(2+) level. CONCLUSION Our findings indicate that NR2-reactive antibody decreases cell viability by Ca(2+) influx in SLE through inhibition of the binding capacity of zinc.


PLOS ONE | 2012

Promotion of Both Proliferation and Neuronal Differentiation in Pluripotent P19 Cells with Stable Overexpression of the Glutamine Transporter slc38a1

Masato Ogura; Takami Kakuda; Takeshi Takarada; Noritaka Nakamichi; Ryo Fukumori; Yeong Hun Kim; Eiichi Hinoi; Yukio Yoneda

Background We previously demonstrated the functional expression in newborn rat neocortical astrocytes of glutamine transporter (GlnT = slc38a1) believed to predominate in neurons over astroglia in the brain. In order to evaluate the possible role of this transporter in neurogenesis, we attempted to establish stable transfectants of GlnT in mouse embryonal carcinoma P19 cells endowed to proliferate for self-renewal and differentiate into progeny cells such as neurons and astroglia, in addition to in vitro pharmacological profiling of the green tea ingredient theanine, which is shown to be a potent inhibitor of glutamine transport mediated by GlnT in cultured neurons and astroglia. Methodology/Principal Findings The full-length coding region of rat GlnT was inserted into a vector for gene transfection along with selection by G418, followed by culture with all-trans retinoic acid under floating conditions and subsequent dispersion for spontaneous differentiation under adherent conditions. Stable overexpression of GlnT led to marked increases in the size of round spheres formed during the culture for 4 days and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction, with concomitant promotion of subsequent differentiation into cells immunoreactive for a neuronal marker protein. In these stable GlnT transfectants before differentiation, drastic upregulation was seen for mRNA expression of several proneural genes with a basic helix-loop-helix domain such as NeuroD1. Although a drastic increase was seen in NeuroD1 promoter activity in stable GlnT transfectants, theanine doubled NeuroD1 promoter activity in stable transfectants of empty vector (EV), without affecting the promoter activity already elevated in GlnT transfectants. Similarly, theanine promoted cellular proliferation and neuronal differentiation in stable EV transfectants, but failed to further stimulate the acceleration of both proliferation and neuronal differentiation found in stable GlnT transfectants. Conclusions/Significance GlnT would promote both proliferation and neuronal differentiation through a mechanism relevant to the upregulation of particular proneural genes in undifferentiated P19 cells.


Neurochemistry International | 2011

A possible pivotal role of mitochondrial free calcium in neurotoxicity mediated by N-methyl-d-aspartate receptors in cultured rat hippocampal neurons

Yuki Kambe; Noritaka Nakamichi; Takeshi Takarada; Ryo Fukumori; Ryota Nakazato; Eiichi Hinoi; Yukio Yoneda

We have previously shown that mitochondrial membrane potential disruption is involved in mechanisms underlying differential vulnerabilities to the excitotoxicity mediated by N-methyl-d-aspartate (NMDA) receptors between primary cultured neurons prepared from rat cortex and hippocampus. To further elucidate the role of mitochondria in the excitotoxicity after activation of NMDA receptors, neurons were loaded with the fluorescent dye calcein diffusible in the cytoplasm and organelles for determination of the activity of mitochondrial permeability transition pore (mPTP) responsible for the leakage of different mitochondrial molecules. The addition of CoCl(2) similarly quenched the intracellular fluorescence except mitochondria in both cultured neurons, while further addition of NMDA led to a leakage of the dye into the cytoplasm in hippocampal neurons only. An mPTP inhibitor prevented the NMDA-induced loss of viability in hippocampal neurons, while an activator of mPTP induced a similarly potent loss of viability in cortical and hippocampal neurons. Although NMDA was more effective in increasing rhodamine-2 fluorescence as a mitochondrial calcium indicator in hippocampal than cortical neurons, a mitochondrial calcium uniporter inhibitor significantly prevented the NMDA-induced loss of viability in hippocampal neurons. Expression of mRNA was significantly higher for the putative uniporter uncoupling protein-2 in hippocampal than cortical neurons. These results suggest that mitochondrial calcium uniporter would be at least in part responsible for the NMDA neurotoxicity through a mechanism relevant to promotion of mPTP orchestration in hippocampal neurons.


Journal of Neuroscience Research | 2010

Induced tolerance to glutamate neurotoxicity through down‐regulation of NR2 subunits of N‐methyl‐D‐aspartate receptors in cultured rat striatal neurons

Yuki Kambe; Noritaka Nakamichi; Takeshi Takarada; Ryo Fukumori; Yukio Yoneda

We have previously shown differential vulnerabilities to glutamate (Glu) excitotoxicity mediated by the N‐methyl‐D‐aspartate (NMDA) receptor (NMDAR) between rat cortical and rat hippocampal neurons in culture. In this study, we evaluated the possible induced tolerance to NMDA neurotoxicity in cultured rat striatal neurons with prior sustained activation of NMDAR. Brief exposure to Glu or NMDA for 1 hr led to a significant decrease in cellular vitality determined 24 hr later in cultured rat striatal neurons, whereas no marked loss was seen in cellular survival after exposure to Glu or NMDA in striatal neurons previously cultured with Glu or NMDA. Sustained culture with Glu or NMDA invariably led to a significant decrease in protein levels of NR2, but not NR1, subunits without affecting their mRNA levels. Similar induced tolerance was seen to the excitotoxicity of NMDA in hippocampal neurons in a manner sensitive to an NMDAR antagonist. Prior culture with NMDA induced less effective alterations in both intracellular free Ca2+ levels and mitochondrial membrane potentials after the addition of NMDA in striatal neurons. However, calpain inhibitor‐I significantly prevented the decreased NR2B and NR2C protein levels in striatal neurons cultured with NMDA. These results suggest that prior tonic activation of NMDAR would induce tolerance to the excitotoxicity mediated by NMDAR through a mechanism related to calpain‐induced down‐regulation of particular NR2 subunits in rat striatal neurons.


Neurochemistry International | 2010

Requirement of both NR3A and NR3B subunits for dominant negative properties on Ca2+ mobilization mediated by acquired N-methyl-d-aspartate receptor channels into mitochondria

Ryo Fukumori; Takeshi Takarada; Noritaka Nakamichi; Yuki Kambe; Hirofumi Kawagoe; Ryota Nakazato; Yukio Yoneda

Conventional N-methyl-D-aspartate (NMDA) receptor (NMDAR) is a heteromeric complex between the essential NR1 subunit and one of NR2A-D subunits toward functional channels permeable to Ca(2+) rather than Na(+) ions. Although recent studies identified dominant negative NR3A and NR3B subunits, whether these subunits inhibit Ca(2+) mobilization through NMDAR channels into mitochondria is not clarified so far. In this study, we investigated Ca(2+) influx across acquired NMDAR channels composed of different NR subunits artificially expressed in HEK293 cells. The addition of NMDA markedly increased intracellular free Ca(2+) levels determined by Fluo-3 in cells transfected with either NR2A or NR2B subunit together with NR1 subunit. Further addition of dizocilpine completely inhibited the increase by NMDA in both types of acquired channels, while the NR2B subunit selective antagonist ifenprodil drastically inhibited the increase by NMDA in cells expressing NR1/NR2B, but not NR1/NR2A, subunits. Similar pharmacological profiles were invariably seen with cell death by NMDA. Introduction of both NR3A and NR3B subunits significantly inhibited the increase by NMDA in intracellular free Ca(2+) levels in both acquired channels, while introduction of either NR3A or NR3B alone was ineffective. Co-expression of both NR3A and NR3B subunits was also required for the prevention of increased mitochondrial free Ca(2+) levels determined by Rhod-2, as well as decreased cellular viability, in cells expressing NR1/NR2A or NR1/NR2B subunits upon exposure to NMDA. These results suggest that co-expression of both NR3A and NR3B subunits is essential for the dominant negative properties on Ca(2+) mobilization through acquired functional NMDAR channels into mitochondria.


PLOS ONE | 2013

Selective Inhibition by Ethanol of Mitochondrial Calcium Influx Mediated by Uncoupling Protein-2 in Relation to N-Methyl-D-Aspartate Cytotoxicity in Cultured Neurons

Ryo Fukumori; Takeshi Takarada; Ryota Nakazato; Koichi Fujikawa; Miki Kou; Eiichi Hinoi; Yukio Yoneda

Background We have shown the involvement of mitochondrial uncoupling protein-2 (UCP2) in the cytotoxicity by N-methyl-D-aspartate receptor (NMDAR) through a mechanism relevant to the increased mitochondrial Ca2+ levels in HEK293 cells with acquired NMDAR channels. Here, we evaluated pharmacological profiles of ethanol on the NMDA-induced increase in mitochondrial Ca2+ levels in cultured murine neocortical neurons. Methodology/Principal Findings In neurons exposed to glutamate or NMDA, a significant increase was seen in mitochondrial Ca2+ levels determined by Rhod-2 at concentrations of 0.1 to 100 µM. Further addition of 250 mM ethanol significantly inhibited the increase by glutamate and NMDA in Rhod-2 fluorescence, while similarly potent inhibition of the NMDA-induced increase was seen after exposure to ethanol at 50 to 250 mM in cultured neurons. Lentiviral overexpression of UCP2 significantly accelerated the increase by NMDA in Rhod-2 fluorescence in neurons, without affecting Fluo-3 fluorescence for intracellular Ca2+ levels. In neurons overexpressing UCP2, exposure to ethanol resulted in significantly more effective inhibition of the NMDA-induced increase in mitochondrial free Ca2+ levels than in those without UCP2 overexpression, despite a similarly efficient increase in intracellular Ca2+ levels irrespective of UCP2 overexpression. Overexpression of UCP2 significantly increased the number of dead cells in a manner prevented by ethanol in neurons exposed to glutamate. In HEK293 cells with NMDAR containing GluN2B subunit, more efficient inhibition was similarly induced by ethanol at 50 and 250 mM on the NMDA-induced increase in mitochondrial Ca2+ levels than in those with GluN2A subunit. Decreased protein levels of GluN2B, but not GluN2A, subunit were seen in immunoprecipitates with UCP2 from neurons with brief exposure to ethanol at concentrations over 50 mM. Conclusions/Significance Ethanol could inhibit the interaction between UCP2 and NMDAR channels to prevent the mitochondrial Ca2+ incorporation and cell death after NMDAR activation in neurons.


PLOS ONE | 2013

Myosin VI reduces proliferation, but not differentiation, in pluripotent P19 cells.

Takeshi Takarada; Miki Kou; Noritaka Nakamichi; Masato Ogura; Yuma Ito; Ryo Fukumori; Hiroshi Kokubo; Gabriela Beatriz Acosta; Eiichi Hinoi; Yukio Yoneda

Background We have previously shown marked upregulation of the mRNA and corresponding protein for the cellular motor molecule myosin VI (Myo6) after an extremely traumatic stress experience, along with a delayed decrease in 5-bromo-2′-deoxyuridine incorporation in the murine hippocampus, a brain structure believed to undergo adult neurogenesis. In this study, we investigated the role of Myo6 in both proliferation and differentiation in pluripotent P19 cells by using stable transfection and RNA interference techniques. Methodology/Principal Findings Stable overexpression of Myo6 not only led to significant inhibition of the reducing activity of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and the size of clustered aggregates in P19 cells, but also resulted in selectively decreased mRNA expression of the repressor type proneural gene Hes5 without affecting the expression of neuronal and astroglial marker proteins. In P19 cells transfected with Myo6 siRNA, by contrast, a significant increase was found in the size of aggregate and MTT reduction along with increased Sox2 protein levels, in addition to marked depletion of the endogenous Myo6 protein. In C6 glioma cells, however, introduction of Myo6 siRNA induced a drastic decrease in endogenous Myo6 protein levels without significantly affecting MTT reduction. The Ca2+ ionophore A23187 drastically increased the luciferase activity in P19 cells transfected with a Myo6 promoter reporter plasmid, but not in HEK293, Neuro2A and C6 glioma cells transfected with the same reporter. Conclusions/Significance These results suggest that Myo6 may play a predominant pivotal role in the mechanism underlying proliferation without affecting differentiation to progeny lineages in pluripotent P19 cells.

Collaboration


Dive into the Ryo Fukumori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge