Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryota Sakaguchi is active.

Publication


Featured researches published by Ryota Sakaguchi.


Nature Medicine | 2012

Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain

Takashi Shichita; Eiichi Hasegawa; Akihiro Kimura; Rimpei Morita; Ryota Sakaguchi; Ichiro Takada; Takashi Sekiya; Hiroaki Ooboshi; Takanari Kitazono; Toru Yanagawa; Tetsuro Ishii; Hideo Takahashi; Shuji Mori; Masahiro Nishibori; Kazumichi Kuroda; Shizuo Akira; Kensuke Miyake; Akihiko Yoshimura

Post-ischemic inflammation is an essential step in the progression of brain ischemia-reperfusion injury. However, the mechanism that activates infiltrating macrophages in the ischemic brain remains to be clarified. Here we demonstrate that peroxiredoxin (Prx) family proteins released extracellularly from necrotic brain cells induce expression of inflammatory cytokines including interleukin-23 in macrophages through activation of Toll-like receptor 2 (TLR2) and TLR4, thereby promoting neural cell death, even though intracellular Prxs have been shown to be neuroprotective. The extracellular release of Prxs in the ischemic core occurred 12 h after stroke onset, and neutralization of extracellular Prxs with antibodies suppressed inflammatory cytokine expression and infarct volume growth. In contrast, high mobility group box 1 (HMGB1), a well-known damage-associated molecular pattern molecule, was released before Prx and had a limited role in post-ischemic macrophage activation. We thus propose that extracellular Prxs are previously unknown danger signals in the ischemic brain and that its blocking agents are potent neuroprotective tools.


Frontiers in Immunology | 2012

SOCS, inflammation, and autoimmunity

Akihiko Yoshimura; Mayu Suzuki; Ryota Sakaguchi; Toshikatsu Hanada; Hideo Yasukawa

Cytokines play essential roles in innate and adaptive immunity. However, excess cytokines or dysregulation of cytokine signaling will cause a variety of diseases, including allergies, autoimmune diseases, inflammation, and cancer. Most cytokines utilize the so-called Janus kinase–signal transducers and activators of transcription pathway. This pathway is negatively regulated by various mechanisms including suppressors of cytokine signaling (SOCS) proteins. SOCS proteins bind to JAK or cytokine receptors, thereby suppressing further signaling events. Especially, suppressor of cytokine signaling-1 (SOCS1) and SOCS3 are strong inhibitors of JAKs, because these two contain kinase inhibitory region at the N-terminus. Studies using conditional knockout mice have shown that SOCS proteins are key physiological as well as pathological regulators of immune homeostasis. Recent studies have also demonstrated that SOCS1 and SOCS3 are important regulators of helper T cell differentiation and functions. This review focuses on the roles of SOCS1 and SOCS3 in T cell mediated inflammatory diseases.


Frontiers in Immunology | 2012

Post-Ischemic Inflammation in the Brain

Takashi Shichita; Ryota Sakaguchi; Mayu Suzuki; Akihiko Yoshimura

Post-ischemic inflammation is an essential step in the progression of brain ischemia-reperfusion injury. In this review, we focus on the post-ischemic inflammation triggered by infiltrating immune cells, macrophages, and T lymphocytes. Brain ischemia is a sterile organ, but injury-induced inflammation is mostly dependent on Toll-like receptor (TLR) 2 and TLR4. Some endogenous TLR ligands, high mobility group box 1 (HMGB1) and peroxiredoxin family proteins, in particular, are implicated in the activation and inflammatory cytokine expression in infiltrating macrophages. Following macrophage activation, T lymphocytes infiltrate the ischemic brain and regulate the delayed phase inflammation. IL-17-producing γδT lymphocytes induced by IL-23 from macrophages promote ischemic brain injury, whereas regulatory T lymphocytes suppress the function of inflammatory mediators. A deeper understanding of the inflammatory mechanisms of infiltrating immune cells may lead to the development of novel neuroprotective therapies.


International Immunology | 2014

Aryl hydrocarbon receptor plays protective roles in cona-induced hepatic injury by both suppressing IFN-γ expression and inducing IL-22

Hiromi Abe; Akihiro Kimura; Sanae Tsuruta; Tomohiro Fukaya; Ryota Sakaguchi; Rimpei Morita; Takashi Sekiya; Takashi Shichita; Kazuaki Chayama; Yoshiaki Fujii-Kuriyama; Akihiko Yoshimura

The aryl hydrocarbon receptor (AhR), a ligand-activated nuclear transcription factor, is known to mediate the toxic and carcinogenic effects of various environmental pollutants, while AhR has been shown to protect animals from various types of tissue injury. ConA-induced hepatitis is known as a mouse model of acute liver injury. Here, we found a protective role of AhR in ConA-induced hepatitis. AhR is induced in the liver during ConA-induced hepatitis, and Ahr (-/-) mice were highly sensitive to this model. Bone marrow chimera experiments indicate that Ahr (-/-) hematopoietic cells are responsible for hypersensitivity to ConA-induced hepatitis. We found that IFN-γ from invariant NKT cells was up-regulated and IL-22 from innate lymphoid cells (ILCs) was abolished in Ahr (-/-) mice. In addition, IL-22 production was still observed in Rag2 (-/-) mice but it was severely reduced in Ahr (-/-) Rag2 (-/-) mice. ConA-induced IL-22 production was also dependent on retinoic acid-related orphan receptor γt. These results show that AhR has crucial protective roles in ConA-induced liver injury via promoting IL-22 production from ILCs and suppressing IFN-γ expression from NKT cells.


Biochemical and Biophysical Research Communications | 2012

Preferential induction of Th17 cells in vitro and in vivo by Fucogalactan from Ganoderma lucidum (Reishi)

Hideyuki Yoshida; Mayu Suzuki; Ryota Sakaguchi; Ito Tani; Hitoshi Kotani; Norimasa Shudo; Akihiko Yoshimura

The mushroom known as Reishi (Ganoderma lucidum) has been used as an herbal medicine for tumor treatment and immune system activation. Because its effects on the differentiation of effector T helper cells have not yet been fully understood, we investigated the effects of Reishi and those of its principal ingredient, β-glucan, on the activation of dendritic cells and the differentiation of Th17 cells. Reishi extracts as well as purified β-glucan (Curdran) activated DCs and caused them to produce large amounts of IL-23. β-glucan also enhanced and sustained the transcription of IL-23p19. The MEK-ERK signaling pathway positively regulates IL-23p19 transcription in β-glucan-stimulated DCs. In a mixed leukocyte reaction, Reishi-stimulated DCs preferentially induced Th17 cells. Furthermore, orally-administrated Reishi increased the percentages of Th17 cells and the transcription levels of antimicrobial peptides. Our results show that Reishi and β-glucan activate DCs to produce large amounts of IL-23, which induces Th17 differentiation both in vitro and in vivo.


Biochemical and Biophysical Research Communications | 2012

Forced expression of stabilized c-Fos in dendritic cells reduces cytokine production and immune responses in vivo

Ryoko Yoshida; Mayu Suzuki; Ryota Sakaguchi; Eiichi Hasegawa; Akihiro Kimura; Takashi Shichita; Takashi Sekiya; Hiroshi Shiraishi; Kouji Shimoda; Akihiko Yoshimura

Intracellular cyclic adenosine monophosphate (cAMP) suppresses innate immunity by inhibiting proinflammatory cytokine production by monocytic cells. We have shown that the transcription factor c-Fos is responsible for cAMP-mediated suppression of inflammatory cytokine production, and that c-Fos protein is stabilized by IKKβ-mediated phosphorylation. We found that S308 is one of the major phosphorylation sites, and that the S308D mutation prolongs c-Fos halflife. To investigate the role of stabilized c-Fos protein in dendritic cells (DCs) in vivo, we generated CD11c-promoter-deriven c-FosS308D transgenic mice. As expected, bone marrow-derived DCs (BMDCs) from these Tg mice produced smaller amounts of inflammatory cytokines, including TNF-α, IL-12, and IL-23, but higher levels of IL-10, in response to LPS, than those from wild-type (Wt) mice. When T cells were co-cultured with BMDCs from Tg mice, production of Th1 and Th17 cytokines was reduced, although T cell proliferation was not affected. Tg mice demonstrated more resistance to experimental autoimmune encephalomyelitis (EAE) than did Wt mice. These data suggest that c-Fos in DCs plays a suppressive role in certain innate and adaptive immune responses.


International Immunology | 2016

Innate-like function of memory Th17 cells for enhancing endotoxin-induced acute lung inflammation through IL-22

Ryota Sakaguchi; Shunsuke Chikuma; Takashi Shichita; Rimpei Morita; Takashi Sekiya; Wenjun Ouyang; Tomomi Ueda; Hiroyuki Seki; Hiroshi Morisaki; Akihiko Yoshimura

Lipopolysaccharide (LPS)-induced acute lung injury (ALI) is known as a mouse model of acute respiratory distress syndrome; however, the function of T-cell-derived cytokines in ALI has not yet been established. We found that LPS challenge in one lung resulted in a rapid induction of innate-type pro-inflammatory cytokines such as IL-6 and TNF-α, followed by the expression of T-cell-type cytokines, including IL-17, IL-22 and IFN-γ. We discovered that IL-23 is important for ALI, since blockage of IL-23 by gene disruption or anti-IL-12/23p40 antibody treatment reduced neutrophil infiltration and inflammatory cytokine secretion into the bronchoalveolar lavage fluid (BALF). IL-23 was mostly produced from F4/80(+)CD11c(+) alveolar macrophages, and IL-23 expression was markedly reduced by the pre-treatment of mice with antibiotics, suggesting that the development of IL-23-producing macrophages required commensal bacteria. Unexpectedly, among T-cell-derived cytokines, IL-22 rather than IL-17 or IFN-γ played a major role in LPS-induced ALI. IL-22 protein levels were higher than IL-17 in the BALF after LPS instillation, and the major source of IL-22 was memory Th17 cells. Lung memory CD4(+) T cells had a potential to produce IL-22 at higher levels than IL-17 in response to IL-1β plus IL-23 without TCR stimulation. Our study revealed an innate-like function of the lung memory Th17 cells that produce IL-22 in response to IL-23 and are involved in exaggeration of ALI.


Masui. The Japanese journal of anesthesiology | 2013

Perioperative management of a patient with anomalous origin of the left coronary artery from the pulmonary artery

Yu Sato; Ryota Sakaguchi; Yasushi Innami; Nobuyuki Katori; Hiroshi Morisaki


Inflammation and Regeneration | 2013

Peroxiredoxin triggers cerebral post-ischemic inflammation

Takashi Shichita; Ryota Sakaguchi; Minako Ito; Taisuke Kondo; Akihiko Yoshimura


Inflammation and Regeneration | 2011

Role of SOCS proteins in inflammation and autoimmune diseases

Tomohiro Fukaya; Mayu Suzuki; Ryota Sakaguchi; Hideo Yasukawa; Akihiko Yoshimura

Collaboration


Dive into the Ryota Sakaguchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge