S. A. Vay
Langley Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. A. Vay.
Journal of Geophysical Research | 2000
Hanwant B. Singh; Y. Chen; Azadeh Tabazadeh; Yasuo Fukui; Isabelle Bey; Robert M. Yantosca; Daniel J. Jacob; F. Arnold; Karl-Heinz Wohlfrom; Elliot Atlas; F. Flocke; D. R. Blake; Nicola J. Blake; Brian G. Heikes; Julie A. Snow; Robert W. Talbot; G. L. Gregory; G. W. Sachse; S. A. Vay; Yasuyuki Kondo
A large number of oxygenated organic chemicals (peroxyacyl nitrates, alkyl nitrates, acetone, formaldehyde, methanol, methylhydroperoxide, acetic acid and formic acid) were measured during the 1997 Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) airborne field campaign over the Atlantic. In this paper, we present a first picture of the distribution of these oxygenated organic chemicals (Ox-organic) in the troposphere and the lower stratosphere, and assess their source and sink relationships. In both the troposphere and the lower stratosphere, the total atmospheric abundance of these oxygenated species (ΣOx-organic) nearly equals that of total nonmethane hydrocarbons (ΣNMHC), which have been traditionally measured. A sizable fraction of the reactive nitrogen (10–30%) is present in its oxygenated organic form. The organic reactive nitrogen fraction is dominated by peroxyacetyl nitrate (PAN), with alkyl nitrates and peroxypropionyl nitrate (PPN) accounting for <5% of total NOy. Comparison of observations with the predictions of the Harvard three-dimensional global model suggests that in many key areas (e.g., formaldehyde and peroxides) substantial differences between measurements and theory are present and must be resolved. In the case of CH3OH, there appears to be a large mismatch between atmospheric concentrations and estimated sources, indicating the presence of major unknown removal processes. Instrument intercomparisons as well as disagreements between observations and model predictions are used to identify needed improvements in key areas. The atmospheric chemistry and sources of this group of chemicals is poorly understood even though their fate is intricately linked with upper tropospheric NOx and HOx cycles.
Journal of Geophysical Research | 2010
F. Chevallier; Philippe Ciais; T. J. Conway; Tuula Aalto; Bruce E. Anderson; P. Bousquet; E.-G. Brunke; L. Ciattaglia; Y. Esaki; M. Fröhlich; Antony Gomez; A. J. Gomez-Pelaez; L. Haszpra; P. B. Krummel; R. L. Langenfelds; Markus Leuenberger; Toshinobu Machida; Fabienne Maignan; Hidekazu Matsueda; J. A. Morguí; Hitoshi Mukai; Takakiyo Nakazawa; Philippe Peylin; M. Ramonet; L. Rivier; Yousuke Sawa; Martina Schmidt; L. P. Steele; S. A. Vay; Alex Vermeulen
This paper documents a global Bayesian variational inversion of CO2 surface fluxes during the period 1988-2008. Weekly fluxes are estimated on a 3.75 degrees x 2.5 degrees (longitude-latitude) grid throughout the 21 years. The assimilated observations include 128 station records from three large data sets of surface CO2 mixing ratio measurements. A Monte Carlo approach rigorously quantifies the theoretical uncertainty of the inverted fluxes at various space and time scales, which is particularly important for proper interpretation of the inverted fluxes. Fluxes are evaluated indirectly against two independent CO2 vertical profile data sets constructed from aircraft measurements in the boundary layer and in the free troposphere. The skill of the inversion is evaluated by the improvement brought over a simple benchmark flux estimation based on the observed atmospheric growth rate. Our error analysis indicates that the carbon budget from the inversion should be more accurate than the a priori carbon budget by 20% to 60% for terrestrial fluxes aggregated at the scale of subcontinental regions in the Northern Hemisphere and over a year, but the inversion cannot clearly distinguish between the regional carbon budgets within a continent. On the basis of the independent observations, the inversion is seen to improve the fluxes compared to the benchmark: the atmospheric simulation of CO2 with the Bayesian inversion method is better by about 1 ppm than the benchmark in the free troposphere, despite possible systematic transport errors. The inversion achieves this improvement by changing the regional fluxes over land at the seasonal and at the interannual time scales. (Less)
Journal of Geophysical Research | 2006
Rebecca A. Washenfelder; Geoffrey C. Toon; J.-F. Blavier; Z. Yang; Norton Allen; Paul O. Wennberg; S. A. Vay; Daniel Michael Matross; Bruce C. Daube
We have developed an automated observatory for measuring atmospheric column abundances of CO_2 and O_2 using near-infrared spectra of the Sun obtained with a high spectral resolution Fourier Transform Spectrometer (FTS). This is the first dedicated laboratory in a new network of ground-based observatories named the Total Carbon Column Observing Network. This network will be used for carbon cycle studies and validation of spaceborne column measurements of greenhouse gases. The observatory was assembled in Pasadena, California, and then permanently deployed to northern Wisconsin during May 2004. It is located in the heavily forested Chequamegon National Forest at the WLEF Tall Tower site, 12 km east of Park Falls, Wisconsin. Under clear sky conditions, ∼0.1% measurement precision is demonstrated for the retrieved column CO_2 abundances. During the Intercontinental Chemical Transport Experiment–North America and CO_2 Boundary Layer Regional Airborne Experiment campaigns in summer 2004, the DC-8 and King Air aircraft recorded eight in situ CO_2 profiles over the WLEF site. Comparison of the integrated aircraft profiles and CO_2 column abundances shows a small bias (∼2%) but an excellent correlation.
Science | 2008
J. E. Campbell; Gregory R. Carmichael; Tianfeng Chai; M. Mena-Carrasco; Youhua Tang; D. R. Blake; Nicola J. Blake; S. A. Vay; G. J. Collatz; Ian T. Baker; Joseph A. Berry; Stephen A. Montzka; Colm Sweeney; Jerald L. Schnoor; Charles O. Stanier
Climate models incorporate photosynthesis-climate feedbacks, yet we lack robust tools for large-scale assessments of these processes. Recent work suggests that carbonyl sulfide (COS), a trace gas consumed by plants, could provide a valuable constraint on photosynthesis. Here we analyze airborne observations of COS and carbon dioxide concentrations during the growing season over North America with a three-dimensional atmospheric transport model. We successfully modeled the persistent vertical drawdown of atmospheric COS using the quantitative relation between COS and photosynthesis that has been measured in plant chamber experiments. Furthermore, this drawdown is driven by plant uptake rather than other continental and oceanic fluxes in the model. These results provide quantitative evidence that COS gradients in the continental growing season may have broad use as a measurement-based photosynthesis tracer.
Journal of Geophysical Research | 2001
Eric J. Jensen; Owen B. Toon; S. A. Vay; J. Ovarlez; Randy D. May; T. P. Bui; Cynthia H. Twohy; B. W. Gandrud; R. F. Pueschel; Ulrich Schumann
In situ measurements of water vapor and temperature from recent aircraft campaigns have provided evidence that the upper troposphere is frequently supersaturated with respect to ice. The peak relative humidities with respect to ice (RHI) occasionally approached water saturation at temperatures ranging from −40°C to −70°C in each of the campaigns. The occurrence frequency of ice supersaturation ranged from about 20% to 45%. Even on flight segments when no ice crystals were detected, ice supersaturation was measured about 5–20% of the time. A numerical cloud model is used to simulate the formation of optically thin, low ice number density cirrus clouds in these supersaturated regions. The potential for scavenging of ice nuclei (IN) by these clouds is evaluated. The simulations suggest that if less than about 5 × 10-3 to 2 × 10-2 cm-3 ice nuclei are present when these supersaturations are generated, then the cirrus formed should be subvisible. These low ice number density clouds scavenge the IN from the supersaturated layer, but the crystals sediment out too rapidly to prevent buildup of high supersaturations. If higher numbers of ice nuclei are present, then the clouds that form are visible and deposition growth of the ice crystals reduces the RHI down to near 100%. Even if no ice clouds form, increasing the RHI from 100% to 150% between 10 and 10.5 km results in a decrease in outgoing longwave radiative flux at the top of the atmosphere of about 8 W m-2. If 0.02–0.1 cm-3 IN are present, the resulting cloud radiative forcing reduces the net radiative flux several watts per square meter further. Given the high frequency of supersaturated regions without optically thick clouds in the upper troposphere, there is a potential for a climatically important class of optically thin cirrus with relatively low ice crystal number densities. The optical properties of these clouds will depend very strongly on the abundance of ice nuclei in the upper troposphere.
Geophysical Research Letters | 1998
William H. Brune; Ian C. Faloona; David Tan; Andrew J. Weinheimer; Teresa L. Campos; B. A. Ridley; S. A. Vay; J. E. Collins; G. W. Sachse; Lyatt Jaeglé; Daniel J. Jacob
The hydroxyl (OH) and hydroperoxyl (HO2) radicals were measured for the first time throughout the troposphere and in the lower stratosphere with a new instrument aboard the NASA DC-8 aircraft during the 1996 SUCCESS mission. Typically midday OH was 0.1-0.5 pptv and HO2 was 3-15 pptv. Comparisons with a steady-state model yield the following conclusions. First, even in the lower stratosphere OH was sensitive to the albedo of low clouds and distant high clouds. Second, although sometimes in agreement with models, observed OH and HO2 were more than 4 times larger at other times. Evidence suggests that for the California upper troposphere on 10 May this discrepancy was due to unmeasured HOx sources from Asia. Third, observed HO2/OH had the expected inverse dependence with NO, but was inexplicably higher than modeled HO2/OH by an average of 30%. Finally, small-scale, midday OH and HO2 features were strongly linked to NO variations.
Journal of Geophysical Research | 2002
Cynthia H. Twohy; Charles F. Clement; B. W. Gandrud; Andrew J. Weinheimer; Teresa L. Campos; Darrel Baumgardner; William H. Brune; Ian C. Faloona; Glen W. Sachse; S. A. Vay; David Tan
downwind of the cirrus anvil, with maximum concentrations of 45,000 per standard cm 3 . Volatility and electron microscope measurements indicated that most of the particles were likely to be small sulfate particles. The enhancement extended over at least a 600-km region. Multivariate statistical analysis revealed that high CN concentrations were associated with surface tracers, as well as convective elements. Convection apparently brings gas-phase particle precursors from the surface to the storm outflow region, where particle nucleation is favored by the extremely low temperatures. Simple calculations showed that deep convective systems may contribute to a substantial portion of the background aerosol in the upper troposphere at midlatitudes. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0320 Atmospheric Composition and Structure: Cloud physics and chemistry; 0322 Atmospheric Composition and Structure: Constituent sources and sinks; 0365 Atmospheric Composition and Structure: Troposphere—composition and chemistry; 0368 Atmospheric Composition and Structure: Troposphere—constituent transport and chemistry;
Geophysical Research Letters | 1999
William H. Brune; David Tan; I. F. Faloona; Lyatt Jaeglé; Daniel J. Jacob; Brian G. Heikes; Julie A. Snow; Yasuyuki Kondo; Richard E. Shetter; G. W. Sachse; Bruce E. Anderson; G. L. Gregory; S. A. Vay; Hanwant B. Singh; D. D. Davis; J. H. Crawford; D. R. Blake
Interactions between atmospheric hydrogen oxides and aircraft nitrogen oxides determine the impact of aircraft exhaust on atmospheric chemistry. To study these interactions, the Subsonic Assessment: Ozone and Nitrogen Oxide Experiment (SONEX) assembled the most complete measurement complement to date for studying HOx (OH and HO2) chemistry in the free troposphere. Observed and modeled HOx agree on average to within experimental uncertainties (±40%). However, significant discrepancies occur as a function of NO and at solar zenith angles >70°. Some discrepancies appear to be removed by model adjustments to HOx-NOx chemistry, particularly by reducing HO2NO2 (PNA) and by including heterogeneous reactions on aerosols and cirrus clouds.
Journal of Geophysical Research | 2003
Rachel S. Russo; Robert W. Talbot; Jack E. Dibb; Eric Scheuer; Garry Seid; C. E. Jordan; Henry E. Fuelberg; G. W. Sachse; M. Avery; S. A. Vay; D. R. Blake; Nicola J. Blake; Elliot Atlas; Alan Fried; S. T. Sandholm; David Tan; Hanwant B. Singh; Julie A. Snow; B J Heikes
[1] We characterize the chemical composition of Asian continental outflow observed during the NASATransport and Chemical Evolution over the Pacific (TRACE-P) mission during February–April 2001 in the western Pacific using data collected on the NASA DC-8 aircraft. A significant anthropogenic impact was present in the free troposphere and as far east as 150E longitude reflecting rapid uplift and transport of continental emissions. Five-day backward trajectories were utilized to identify five principal Asian source regions of outflow: central, coastal, north-northwest (NNW), southeast (SE), and west-southwest (WSW). The maximum mixing ratios for several species, such as CO, C2Cl4 ,C H3Cl, and hydrocarbons, were more than a factor of 2 larger in the boundary layer of the central and coastal regions due to industrial activity in East Asia. CO was well correlated with C2H2 ,C 2H6 ,C 2Cl4, and CH3Cl at low altitudes in these two regions (r 2 0.77–0.97). The NNW, WSW, and SE regions were impacted by anthropogenic sources above the boundary layer presumably due to the longer transport distances of air masses to the western Pacific. Frontal and convective lifting of continental emissions was most likely responsible for the high altitude outflow in these three regions. Photochemical processing was influential in each source region resulting in enhanced mixing ratios of O3, PAN, HNO3 ,H 2O2, and CH3OOH. The air masses encountered in all five regions were composed of a complex mixture of photochemically aged air with more recent emissions mixed into the outflow as indicated by enhanced hydrocarbon ratios (C2H2/CO 3 and C3H8/C2H6 0.2). Combustion, industrial activities, and the burning of biofuels and biomass all contributed to the chemical composition of air masses from each source region as demonstrated by the use of C2H2 ,C 2Cl4, and CH3Cl as atmospheric tracers. Mixing ratios of O3, CO, C2H2 ,C 2H6 ,S O2, and C2Cl4 were compared for the TRACE-P and PEM-West B missions. In the more northern regions, O3, CO, and SO2 were higher at low altitudes during TRACE-P. In general, mixing ratios were fairly similar between the two missions in the southern regions. A comparison between CO/CO2, CO/CH4 ,C 2H6/ C3H8 ,N Ox/SO2, and NOy/(SO2 + nss-SO4) ratios for the five source regions and for the 2000 Asian emissions summary showed very close agreement indicating that Asian emissions were well represented by the TRACE-P data and the emissions inventory. INDEX TERMS: 0365 Atmospheric Composition and Structure: Troposphere—composition and chemistry; 0368 Atmospheric Composition and Structure: Troposphere—constituent transport and chemistry; 0345 Atmospheric Composition and Structure: Pollution—urban and regional (0305)
Journal of Geophysical Research | 2004
Y. Kondo; Yu Morino; N. Takegawa; M. Koike; K. Kita; Yuzo Miyazaki; G. W. Sachse; S. A. Vay; M. Avery; F. Flocke; Andrew J. Weinheimer; F. L. Eisele; Mark A. Zondlo; Rodney J. Weber; Hanwant B. Singh; G. Chen; J. H. Crawford; D. R. Blake; Henry E. Fuelberg; Antony D. Clarke; Robert W. Talbot; S. T. Sandholm; Edward V. Browell; David G. Streets; Ben Liley
[1] Aircraft measurements of ozone (O3) and its precursors (reactive nitrogen, CO, nonmethane hydrocarbons) were made over the western Pacific during the Transport and Chemical Evolution Over the Pacific (TRACE-P) campaign, which was conducted during February–April 2001. Biomass burning activity was high over Southeast Asia (SEA) during this period (dry season), and convective activity over SEA frequently transported air from the boundary layer to the free troposphere, followed by eastward transport to the sampling region over the western Pacific south of 30� N. This data set allows for systematic investigations of the chemical and physical processes in the outflow from SEA. Methyl chloride (CH3Cl) and CO are chosen as primary and secondary tracers, respectively, to gauge the degree of the impact of emissions of trace species from biomass burning. Biomass burning is found to be a major source of reactive nitrogen (NOx, PAN, HNO3, and nitrate) and O3 in this region from correlations of these species with the tracers. Changes in the abundance of reactive nitrogen during upward transport are quantified from the altitude change of the slopes of the correlations of these species with CO. NOx decreased with altitude due to its oxidation to HNO3. On the other hand, PAN was conserved during transport from the lower to the middle troposphere, consistent with its low water solubility and chemical stability at low temperatures. Large losses of HNO3 and nitrate, which are highly water soluble, occurred in the free troposphere, most likely due to wet removal by precipitation. This has been shown to be the major pathway of NOy loss in the middle troposphere. Increases in the mixing ratios of O3 and its precursors due to biomass burning in SEA are estimated using the tracers. Enhancements of CO and total reactive nitrogen (NOy), which are directly emitted from biomass burning, were largest at 2–4 km. At this altitudetheincreasesinNOyandO3were810partspertrillionbyvolume(pptv)and26parts per billion by volume (ppbv) above their background values of 240 pptv and 31 ppbv, respectively. The slope of the O3-CO correlation in biomass burning plumes was similar to those observed in fire plumes in northern Australia, Africa, and Canada. The O3 production efficiency (OPE) derived from the O3-CO slope and NOx/CO emission ratio (ER) is shown to be positively correlated with the C2H4/NOx ER, indicating that the C2H4/NOx ER is a critical parameter in determining the OPE. Comparison of the net O3 flux across the western Pacific region and total O3 production due to biomass burning in