Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Ballmer is active.

Publication


Featured researches published by S. Ballmer.


Classical and Quantum Gravity | 2010

Predictions for the Rates of Compact Binary Coalescences Observable by Ground-based Gravitational-wave Detectors

J. Abadie; R. Abbott; M. Abernathy; T. Accadia; F. Acernese; C. Adams; R. Adhikari; B. Allen; G. Allen; E. Amador Ceron; S. Anderson; Warren G. Anderson; F. Antonucci; S Aoudia; M. A. Arain; M. C. Araya; M. Aronsson; K G Arun; S. Aston; P. Astone; D. Atkinson; S. Babak; S. Ballmer; D. Barker; F. Barone; P. Barriga; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos

We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr−1 per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr−1 MWEG−1 to 1000 Myr−1 MWEG−1 (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 (erratum)). We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO–Virgo interferometers, with a plausible range between 2 × 10−4 and 0.2 per year. The likely binary neutron–star detection rate for the Advanced LIGO–Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year.


Astronomy and Astrophysics | 2012

Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts

J. Abadie; B. Abbott; R. Abbott; T. D. Abbott; M. Abernathy; T. Accadia; F. Acernese; C. Adams; R. Adhikari; C. Affeldt; M. Agathos; P. Ajith; B. Allen; G. Allen; E. Amador Ceron; D. Amariutei; R. Amin; S. Anderson; W. G. Anderson; K. Arai; M. A. Arain; M. C. Araya; S. Aston; P. Astone; D. Atkinson; P. Aufmuth; C. Aulbert; B. E. Aylott; S. Babak; P. Baker

Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec. 17, 2009 to Jan. 8, 2010 and Sep. 2 to Oct. 20, 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipelines ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with similar to 50% or better probability with a few pointings of wide-field telescopes.Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to Oct 20 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipelines ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with ~50% or better probability with a few pointings of wide-field telescopes.


The Astrophysical Journal | 2010

Search for gravitational-wave bursts associated with gamma-ray bursts using data from LIGO science run 5 and VIRGO science run 1.

B. Abbott; R. Abbott; F. Acernese; R. Adhikari; P. Ajith; B. Allen; G. Allen; R. Amin; S. Anderson; W. G. Anderson; F. Antonucci; S. Aoudia; M. C. Araya; H. Armandula; P. Armor; K. G. Arun; Y. Aso; S. Aston; P. Astone; P. Aufmuth; C. Aulbert; S. Babak; P. Baker; G. Ballardin; S. Ballmer; C. Barker; D. Barker; F. Barone; B. Barr; P. Barriga

We present the results of a search for gravitational-wave bursts associated with 137 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments during the fifth LIGO science run and first Virgo science run. The data used in this analysis were collected from 2005 November 4 to 2007 October 1, and most of the GRB triggers were from the Swift satellite. The search uses a coherent network analysis method that takes into account the different locations and orientations of the interferometers at the three LIGO-Virgo sites. We find no evidence for gravitational-wave burst signals associated with this sample of GRBs. Using simulated short-duration (<1 s) waveforms, we set upper limits on the amplitude of gravitational waves associated with each GRB. We also place lower bounds on the distance to each GRB under the assumption of a fixed energy emission in gravitational waves, with typical limits of D ~ 15 Mpc (E_GW^iso / 0.01 M_o c^2)^1/2 for emission at frequencies around 150 Hz, where the LIGO-Virgo detector network has best sensitivity. We present astrophysical interpretations and implications of these results, and prospects for corresponding searches during future LIGO-Virgo runs.


Physical Review D | 2009

Optimal strategies for gravitational wave stochastic background searches in pulsar timing data

Melissa Anholm; S. Ballmer; Jolien D. E. Creighton; Lawrence Price; X. Siemens

A low frequency stochastic background of gravitational waves may be detected by pulsar timing experiments in the next 5 to 10 yr. Using methods developed to analyze interferometric gravitational wave data, in this paper we lay out the optimal techniques to detect a background of gravitational waves using a pulsar timing array. We show that for pulsar distances and gravitational wave frequencies typical of pulsar timing experiments, neglecting the effect of the metric perturbation at the pulsar does not result in a significant deviation from optimality. We discuss methods for setting upper limits using the optimal statistic, show how to construct skymaps using the pulsar timing array, and consider several issues associated with realistic analysis of pulsar timing data.


Physical Review D | 2008

Thermo-optic noise in coated mirrors for high-precision optical measurements

M. Evans; S. Ballmer; Martin M. Fejer; P. Fritschel; G. M. Harry; G. H. Ogin

Thermal fluctuations in the coatings used to make high reflectors are becoming significant noise sources in precision optical measurements and are particularly relevant to advanced gravitational-wave detectors. There are two recognized sources of coating thermal noise; mechanical loss and thermal dissipation. Thermal dissipation causes thermal fluctuations in the coating which produce noise via the thermoelastic and thermorefractive mechanisms. We treat these mechanisms coherently, give a correction for finite coating thickness, and evaluate the implications for Advanced LIGO.


The Astrophysical Journal | 2010

First search for gravitational waves from the youngest known neutron star

J. Abadie; B. Abbott; R. Abbott; M. Abernathy; C. Adams; R. Adhikari; P. Ajith; B. Allen; G. Allen; E. Amador Ceron; R. Amin; S. Anderson; W. G. Anderson; M. A. Arain; M. C. Araya; M. Aronsson; Y. Aso; S. Aston; D. Atkinson; P. Aufmuth; C. Aulbert; S. Babak; P. Baker; S. Ballmer; D. Barker; S. Barnum; B. Barr; P. Barriga; L. Barsotti; M. A. Barton

We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser Interferometer Gravitational-Wave Observatory. It searches gravitational-wave frequencies from 100 to 300 Hz and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and for different spin-down mechanisms. No gravitational-wave signal was detected. Within the range of search frequencies, we set 95% confidence upper limits of (0.7-1.2) × 10–24 on the intrinsic gravitational-wave strain, (0.4-4) × 10–4 on the equatorial ellipticity of the neutron star, and 0.005-0.14 on the amplitude of r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway r-modes. This paper is also the first gravitational-wave search to present upper limits on the r-mode amplitude.


Physical Review Letters | 2015

Observation of Parametric Instability in Advanced LIGO

M. Evans; Slawek Gras; P. Fritschel; John B. Miller; L. Barsotti; D. V. Martynov; A. F. Brooks; D. C. Coyne; R. Abbott; R. Adhikari; Koji Arai; Rolf Bork; Bill Kells; J. G. Rollins; N. D. Smith-Lefebvre; G. Vajente; Hiroaki Yamamoto; C. Adams; S. M. Aston; Joseph Betzweiser; V. V. Frolov; Adam Mullavey; A. Pele; J. H. Romie; M. Thomas; Keith Thorne; S. Dwyer; K. Izumi; Keita Kawabe; D. Sigg

Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this Letter, we describe the first observation of parametric instability in a gravitational wave detector, and the means by which it has been removed as a barrier to progress.


Physical Review D | 2015

Gravitational wave detector with cosmological reach

S. E. Dwyer; D. Sigg; S. Ballmer; L. Barsotti; N. Mavalvala; M. Evans

Twenty years ago, construction began on the Laser Interferometer Gravitational-wave Observatory (LIGO). Advanced LIGO, with a factor of 10 better design sensitivity than Initial LIGO, will begin taking data this year, and should soon make detections a monthly occurrence. While Advanced LIGO promises to make first detections of gravitational waves from the nearby universe, an additional factor of 10 increase in sensitivity would put exciting science targets within reach by providing observations of binary black hole inspirals throughout most of the history of star formation, and high signal to noise observations of nearby events. Design studies for future detectors to date rely on significant technological advances that are futuristic and risky. In this paper we propose a different direction. We resurrect the idea of using longer arm lengths coupled with largely proven technologies. Since the major noise sources that limit gravitational wave detectors do not scale trivially with the length of the detector, we study their impact and find that 40 km arm lengths are nearly optimal, and can incorporate currently available technologies to detect gravitational wave sources at cosmological distances ðz ≳ 7Þ.


Physical Review D | 2009

Probing the anisotropies of a stochastic gravitational-wave background using a network of ground-based laser interferometers

E. Thrane; S. Ballmer; J. D. Romano; Sanjit Mitra; D. Talukder; S. Bose; V. Mandic

We present a maximum-likelihood analysis for estimating the angular distribution of power in an anisotropic stochastic gravitational-wave background using ground-based laser interferometers. The standard isotropic and gravitational-wave radiometer searches (optimal for point sources) are recovered as special limiting cases. The angular distribution can be decomposed with respect to any set of basis functions on the sky, and the single-baseline, cross-correlation analysis is easily extended to a network of three or more detectors--that is, to multiple baselines. A spherical-harmonic decomposition, which provides maximum-likelihood estimates of the multipole moments of the gravitational-wave sky, is described in detail. We also discuss (i) the covariance matrix of the estimators and its relationship to the detector response of a network of interferometers, (ii) a singular-value decomposition method for regularizing the deconvolution of the detector response from the measured sky map, (iii) the expected increase in sensitivity obtained by including multiple baselines, and (iv) the numerical results of this method when applied to simulated data consisting of both pointlike and diffuse sources. Comparisons between this general method and the standard isotropic and radiometer searches are given throughout, to make contact with the existing literature on stochastic background searches.


Classical and Quantum Gravity | 2014

Achieving resonance in the Advanced LIGO gravitational-wave interferometer

A. Staley; D. V. Martynov; R. Abbott; R. Adhikari; K. Arai; S. Ballmer; L. Barsotti; A. F. Brooks; R. T. Derosa; S. Dwyer; A. Effler; M. Evans; P. Fritschel; V. V. Frolov; C. Gray; C. Guido; R. Gustafson; M. C. Heintze; D. Hoak; K. Izumi; K. Kawabe; E. J. King; J. S. Kissel; K. Kokeyama; M. Landry; D. E. McClelland; J. Miller; A. Mullavey; B OʼReilly; J. G. Rollins

Interferometric gravitational-wave detectors are complex instruments comprised of a Michelson interferometer enhanced by multiple coupled cavities. Active feedback control is required to operate these instruments and keep the cavities locked on resonance. The optical response is highly nonlinear until a good operating point is reached. The linear operating range is between 0.01% and 1% of a fringe for each degree of freedom. The resonance lock has to be achieved in all five degrees of freedom simultaneously, making the acquisition difficult. Furthermore, the cavity linewidth seen by the laser is only _(~1) Hz, which is four orders of magnitude smaller than the linewidth of the free running laser. The arm length stabilization system is a new technique used for arm cavity locking in Advanced LIGO. Together with a modulation technique utilizing third harmonics to lock the central Michelson interferometer, the Advanced LIGO detector has been successfully locked and brought to an operating point where detecting gravitational-waves becomes feasible.

Collaboration


Dive into the S. Ballmer's collaboration.

Top Co-Authors

Avatar

R. Abbott

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. Adhikari

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. C. Araya

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S. Anderson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Abbott

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

W. G. Anderson

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

P. Ajith

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar

S. Aston

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

C. Adams

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge