Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Duleu is active.

Publication


Featured researches published by S. Duleu.


Journal of Immunology | 2004

Mouse Strain Susceptibility to Trypanosome Infection: An Arginase-Dependent Effect

S. Duleu; Philippe Vincendeau; Pierrette Courtois; Silla Semballa; I. Lagroye; Sylvie Daulouède; Jean-Luc Boucher; Keith T. Wilson; B. Veyret; Alain P. Gobert

We previously reported that macrophage arginase inhibits NO-dependent trypanosome killing in vitro and in vivo. BALB/c and C57BL/6 mice are known to be susceptible and resistant to trypanosome infection, respectively. Hence, we assessed the expression and the role of inducible NO synthase (iNOS) and arginase in these two mouse strains infected with Trypanosoma brucei brucei. Arginase I and arginase II mRNA expression was higher in macrophages from infected BALB/c compared with those from C57BL/6 mice, whereas iNOS mRNA was up-regulated at the same level in both phenotypes. Similarly, arginase activity was more important in macrophages from infected BALB/c vs infected C57BL/6 mice. Moreover, increase of arginase I and arginase II mRNA levels and of macrophage arginase activity was directly induced by trypanosomes, with a higher level in BALB/c compared with C57BL/6 mice. Neither iNOS expression nor NO production was stimulated by trypanosomes in vitro. The high level of arginase activity in T. brucei brucei-infected BALB/c macrophages strongly inhibited macrophage NO production, which in turn resulted in less trypanosome killing compared with C57BL/6 macrophages. NO generation and parasite killing were restored to the same level in BALB/c and C57BL/6 macrophages when arginase was specifically inhibited with Nω-hydroxy-nor-l-arginine. In conclusion, host arginase represents a marker of resistance/susceptibility to trypanosome infections.


Radiation Research | 2009

A Confirmation Study of Russian and Ukrainian Data on Effects of 2450 MHz Microwave Exposure on Immunological Processes and Teratology in Rats

F. Poulletier de Gannes; M. Taxile; S. Duleu; A. Hurtier; E. Haro; Michel Geffard; Gilles Ruffié; B. Billaudel; Philippe Leveque; P. Dufour; I. Lagroye; B. Veyret

Abstract In a series of Russian and Ukrainian papers published from 1974–1986, it was reported that 30-day whole-body exposures to continuous-wave (CW) radiofrequency (RF) radiation at 2375 MHz and 5 W/m2 disrupted the antigenic structure of rat brain tissue. The authors suggested that this action caused an autoimmune response in exposed animals. Moreover, these studies reported that blood serum from exposed rats injected into intact nonexposed female rats on the 10th day of pregnancy led to increased postimplantation embryo mortality and decreased fetus size and body weight. Because the results of these studies served in part as the basis for setting exposure limits in the former USSR, it was deemed necessary to perform confirmation studies, using modern dosimetric and biological methods. In our study, a new system was constructed to expose free-moving rats under far-field conditions. Whole-body and brain-averaged specific absorption rates (SARs) were calculated. All results, using ELISA and classic teratology end points, were negative in our laboratory. On the basis of this investigation, we conclude that, under these exposure conditions (2450 MHz, CW, 7 h/day, 30 days, 0.16 W/kg whole-body SAR), RF-radiation exposure had no influence on several immune and degenerative parameters or on prenatal development.


International Journal of Alzheimer's Disease | 2010

Circulating Antibodies to IDO/THO Pathway Metabolites in Alzheimer's Disease

S. Duleu; A. Mangas; F. Sevin; B. Veyret; Alban Bessede; Michel Geffard

In Alzheimers disease, indoleamine 2,3-dioxygenase and tryptophan hydroxylase are known to induce an overproduction of neurotoxic compounds, such as quinolinic acid and 3-hydroxykynurenine from the former, and 5-hydroxytryptophol and 5-methoxytryptophol from the latter. Other compounds, such as kynurenic acid, serotonin, and melatonin are produced via the same pathways. An improved ELISA method identified circulating antibodies directed against these compounds, linked to proteins, as previously described for other chronic diseases. This describes how only the A isotype of circulating immunoglobulins recognized a pattern of conjugated tryptophan metabolites in the sera of Alzheimer patients. These data indirectly confirmed the involvement of tryptophan derivatives in the pathogenic processes of Alzheimers disease. Further studies are required to evaluate the relevance of these antibody patterns in monitoring this disease.


Bioelectromagnetics | 2012

In utero and early-life exposure of rats to a Wi-Fi signal: Screening of immune markers in sera and gestational outcome

S. Aït-Aïssa; Bernard Billaudel; Florence Poulletier de Gannes; Gilles Ruffié; S. Duleu; A. Hurtier; E. Haro; M. Taxile; Axel Athane; Michel Geffard; Tongning Wu; Joe Wiart; D. Bodet; Bernard Veyret; I. Lagroye

An experimental approach was used to assess immunological biomarkers in the sera of young rats exposed in utero and postnatal to non-ionizing radiofrequency fields. Pregnant rats were exposed free-running, 2 h/day and 5 days/week to a 2.45 GHz Wi-Fi signal in a reverberation chamber at whole-body specific absorption rates (SAR) of 0, 0.08, 0.4, and 4 W/kg (with 10, 10, 12, and 9 rats, respectively), while cage control rats were kept in the animal facility (11 rats). Dams were exposed from days 6 to 21 of gestation and then three newborns per litter were further exposed from birth to day 35 postnatal. On day 35 after birth, all pups were sacrificed and sera collected. The screening of sera for antibodies directed against 15 different antigens related to damage and/or pathological markers was conducted using enzyme-linked immunosorbent assay (ELISA). No change in humoral response of young pups was observed, regardless of the types of biomarker and SAR levels. This study also provided some data on gestational outcome following in utero exposure to Wi-Fi signals. Mass evaluation of dams and pups and the number of pups per litter was monitored, and the genital tracts of young rats were observed for abnormalities by measuring anogenital distance. Under these experimental conditions, our observations suggest a lack of adverse effects of Wi-Fi exposure on delivery and general condition of the animals.


Amyotrophic Lateral Sclerosis | 2008

Amyotrophic Lateral Sclerosis (ALS) and extremely-low frequency (ELF) magnetic fields: A study in the SOD-1 transgenic mouse model

Florence Poulletier de Gannes; Gilles Ruffié; M. Taxile; E. Ladevèze; A. Hurtier; E. Haro; S. Duleu; Renaud Charlet de Sauvage; B. Billaudel; Michel Geffard; Bernard Veyret; I. Lagroye

There is some evidence from epidemiological studies of an association between occupational exposure to electromagnetic fields and Amyotrophic Lateral Sclerosis (ALS). Our aim was to perform, for the first time, an animal study in a controlled magnetic environment. We used the SOD-1 mouse model to assess the possible effect of ELF magnetic fields on development of the disease. Seven mice per group were exposed to 50 Hz magnetic fields at two intensities (100 and 1000 µTrms) before the onset of the clinical signs of ALS. Exposure lasted 7 weeks, and body weight, motor performance and life span were monitored. Our results did not reveal any evidence of a link between ELF exposure and ALS in this transgenic animal model.


Molecular Neurobiology | 2017

IgA/IgM responses to tryptophan and tryptophan catabolites (TRYCATs) are differently associated with prenatal depression, physio-somatic symptoms at the end of term and premenstrual syndrome.

Chutima Roomruangwong; Buranee Kanchanatawan; Sunee Sirivichayakul; George M. Anderson; André F. Carvalho; S. Duleu; Michel Geffard; Michael Maes

There is some evidence that lowered tryptophan and an activated tryptophan catabolite (TRYCAT) pathway play a role in depression, somatoform disorder, and postpartum blues. The aim of this study is to delineate the associations between the TRYCAT pathway and premenstrual syndrome (PMS) and perinatal depressive and physio-somatic symptoms. We examine the associations between end of term serum IgM and IgA responses to tryptophan and 9 TRYCATs in relation to zinc, C-reactive protein (CRP), and haptoglobin and prenatal physio-somatic (previously known as psychosomatic) symptoms (fatigue, back pain, muscle pain, dyspepsia, obstipation) and prenatal and postnatal depression and anxiety symptoms as measured using the Edinburgh Postnatal Depression Scale (EPDS), Hamilton Depression Rating Scale (HAMD), and Spielberger’s State Anxiety Inventory (STAI). We included pregnant females with (n = 24) and without depression (n = 25) and 24 non-pregnant females. There were no significant associations between the IgA/IgM responses to tryptophan and TRYCATs and prenatal and postnatal depression/anxiety symptoms, except for lowered IgA responses to anthranilic acid in prenatal depression. A large part of the variance in IgA responses to most TRYCATs was explained by PMS and haptoglobin (positively) and CRP (inversely) levels. The IgA responses to TRYCATs were significantly increased in PMS, in particular picolinic, anthranilic, xanthurenic and kynurenic acid, and 3OH-kynurenine. Variance (62.5%) in physio-somatic symptoms at the end of term was explained by PMS, previous depressions, zinc (inversely), CRP and haptoglobin (both positively), and the IgM responses to quinolinic acid (positively), anthranilic acid, and tryptophan (both negatively). The results suggest that mucosa-derived TRYCAT pathway activation is significantly associated with PMS, but not with perinatal depression/anxiety symptoms. Physio-somatic symptoms in pregnancy have an immune-inflammatory pathophysiology. Induction of the TRYCAT pathway appears to be more related to physio-somatic than to depression symptoms.


Journal of Affective Disorders | 2017

Activated neuro-oxidative and neuro-nitrosative pathways at the end of term are associated with inflammation and physio-somatic and depression symptoms, while predicting outcome characteristics in mother and baby

Chutima Roomruangwong; Décio Sabbatini Barbosa; Andressa Keiko Matsumoto; André de Souza Nogueira; Buranee Kanchanatawan; Sunee Sirivichayakul; André F. Carvalho; S. Duleu; Michel Geffard; Estefania Gastaldello Moreira; Michael Maes

OBJECTIVES To examine oxidative & nitrosative stress (O&NS) biomarkers at the end of term in relation to perinatal affective symptoms, neuro-immune biomarkers and pregnancy-related outcome variables. METHODS We measured plasma advanced oxidation protein products (AOPP), nitric oxide metabolites (NOx), total radical trapping antioxidant parameter (TRAP), -sulfhydryl (-SH), peroxides (LOOH) and paraoxonase (PON)1 activity in pregnant women with and without prenatal depression and non-pregnant controls. RESULTS Pregnancy is accompanied by significantly increased AOPP and NOx, and lowered TRAP, -SH and LOOH. Increased O&NS and lowered LOOH and -SH levels are associated with prenatal depressive and physio-somatic symptoms (fatigue, pain, dyspepsia, gastro-intestinal symptoms). Increased AOPP and NOx are significantly associated with lowered -SH, TRAP and zinc, and with increased haptoglobin and C-reactive protein levels. Increased O&NS and lowered TRAP and PON 1 activity, at the end of term predict mother (e.g. hyperpigmentation, labor duration, caesarian section, cord length, breast milk flow) and baby (e.g. sleep and feeding problems) outcome characteristics. CONCLUSIONS Pregnancy is accompanied by interrelated signs of O&NS, lowered antioxidant defenses and activated neuro-immune pathways. Increased O&NS at the end of term is associated with perinatal depressive and physio-somatic symptoms and may predict obstetric and behavioral complications in mother and baby.


Cns & Neurological Disorders-drug Targets | 2017

IgA/IgM Responses to Gram-Negative Bacteria are not Associated with Perinatal Depression, but with Physio-somatic Symptoms and Activation of the Tryptophan Catabolite Pathway at the End of Term and Postnatal Anxiety

Chutima Roomruangwong; Buranee Kanchanatawan; Sunee Sirivichayakul; George M. Anderson; André F. Carvalho; S. Duleu; Michel Geffard; Michael Maes

Evidence has implicated the translocation of commensal Gram-negative bacteria (Gram-B) due to leaky gut in the pathophysiology of depression and physio-somatic symptoms (e.g. fatigue, pain, irritable bowel syndrome, malaise, etc.). In addition, the leaky gut may contribute to immune-inflammatory activation and oxidative stress. This study investigated whether bacterial translocation is associated with perinatal depression and anxiety scores and with prenatal physio-somatic symptoms and immune-inflammatory biomarkers, including the tryptophan catabolite (TRYCAT) pathway. Data were collected in pregnant women at the end of term (T1) and 4-6 weeks after delivery (T2) as well as in non-pregnant controls. We examined the associations between serum IgM/IgA responses to Gram-B at the end of term and depression (Edinburgh Postnatal Depression Scale -EPDS) and anxiety (Spielbergers State Anxiety Inventory -STAI) symptoms. Levels of C-reactive protein, zinc, haptoglobin, hematocrit and IgA/IgM responses to 9 TRYCATs were also measured. No significant associations of the IgA/IgM responses to Gram-B with prenatal depression and anxiety were observed. Increased IgA/IgM responses to Gram-B predict higher levels of haptoglobin, hematocrit and TRYCATs, in particular quinolinic acid and the quinolinic acid / kynurenic acid ratio. IgA responses to Gram-B were significantly lowered in pregnant women compared to age-matched non-pregnant women, while IgM responses were significantly elevated in participants with alcohol consumption. Physio-somatic symptoms at the end of term were significantly associated with IgM responses to Klebsiella pneumonia. Postnatal anxiety was significantly predicted by IgA responses to Pseudomonas aeruginosa. In conclusion, our findings suggest that pregnancy may protect against bacterial translocation, while alcohol use may increase bacterial translocation. The results suggest that end of term mucosa-derived immune responses to Gram-B contribute to immune activation, physio-somatic symptoms at the end of term and postnatal anxiety.


Current Medicinal Chemistry | 2009

A new drug candidate (GEMSP) for multiple sclerosis.

A. Mangas; Rafael Coveñas; D. Bodet; S. Duleu; Michel Geffard

GEMSP is a mixture of functional polypeptides: fatty acids linked to poly-L-Lysine (PL), antioxidants linked to PL, free radical scavengers linked to PL, and amino acids linked to PL (patent numbers 6114388 (USA) and 792167 (EU)). In this review, we update the data on this new drug reported in the literature. There is evidence suggesting that GEMSP is a good candidate for the treatment of multiple sclerosis (MS), an inflammatory and neurodegenerative disease of the central nervous system characterized by focal leukocyte inflammation, demyelization and axonal degeneration, resulting in nerve cell dysfunction. Experimental autoimmune encephalomyelitis (EAE) is the main animal model used in the study of MS, a T cell-mediated autoimmune disease of the central nervous system. EAE has many clinical and histopathological similarities to MS. In this model, preclinical studies on GEMSP have demonstrated that the drug strongly inhibits brain leukocyte infiltration and completely abolishes EAE episodes and clinical scores, and it also appears that GEMSP preserves myelin integrity. In general, treatment with the free constituents of GEMSP (not linked to the inert carrier protein) is poorly active against brain leukocyte infiltration in EAE-immunized animals. This means that free molecules (not linked to PL) exert a very poor action on such infiltration and that these molecules are either rapidly incorporated into the metabolism or are degraded. Moreover, with immunocytochemical techniques, it has been demonstrated that one component of GEMSP, the methionine compound, is stored inside the motoneurons of the ventral horn of the spinal cord. However, this component of GEMSP has not been found in the brain. The new candidate for MS therapy has shown no toxicity either in experimental animals or in humans. An open clinical trial in humans has demonstrated that GEMSP is completely safe. In addition, the approved drugs for the treatment of MS exert marked side effects, but no side effects have been reported following the administration of GEMSP. The results obtained at six months of treatment with low doses of GEMSP (0.75 mg/day) in that open clinical trial in humans were as follows: 55% of the patients maintained a stable expanded disability status scale (EDSS) value and 18% of the patients had a decreased EDSS value instead of a normal progression of 0.25 point on the mean EDSS scale. We focus our review on the following topics: 1) EAE models and clinical evaluation; 2) the synthesis of GEMSP; 3) the effects of GEMSP dosage on EAE; 4) the effects of GEMSP on brain leukocyte infiltration; 5) GEMSP inside motoneurons; 6) the role of the components of GEMSP; and 7) GEMSP in MS patients, GEMSP toxicity, and side effects. In conclusion, all the data reported indicate that GEMSP is a new potential drug candidate for the treatment of MS.


Journal of Chemical Neuroanatomy | 2009

Vitamins in the monkey brain : an immunocytochemical study

A. Mangas; Rafael Coveñas; D. Bodet; S. Duleu; P. Marcos; Michel Geffard

Using highly specific antisera directed against vitamins, the distribution of pyridoxal-, pyridoxine-, vitamin C- and nicotinamide-immunoreactive structures in the monkey (Macaca fascicularis) brain was studied. Neither immunoreactive structures containing pyridoxine or nicotinamide, nor immunoreactive fibers containing vitamin C were found in the monkey brain. However, this work reports the first visualization and the morphological characteristics of pyridoxal- and vitamin C-immunoreactive cell bodies in the mammalian central nervous system using an indirect immunoperoxidase technique. A high density of pyridoxal-immunoreactive cell bodies was found in the paraventricular hypothalamic nucleus and in the supraoptic nucleus and a low density of the same was observed in the periventricular hypothalamic region, whereas a moderate density of vitamin C-immunoreactive cell bodies was observed in the somatosensorial cortex (precentral gyrus). Immunoreactive fibers containing pyridoxal were only visualized in the anterior commissure. The restricted distribution of pyridoxal and vitamin C in the monkey brain suggests that both vitamins could be involved in very specific physiological mechanisms.

Collaboration


Dive into the S. Duleu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Mangas

University of Salamanca

View shared research outputs
Top Co-Authors

Avatar

I. Lagroye

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Taxile

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar

E. Haro

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar

B. Veyret

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Hurtier

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar

D. Bodet

University of Bordeaux

View shared research outputs
Researchain Logo
Decentralizing Knowledge