Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. E. Caldwell is active.

Publication


Featured researches published by S. E. Caldwell.


Physics of Plasmas | 1998

The development and advantages of beryllium capsules for the National Ignition Facility

Douglas Wilson; P. A. Bradley; Nelson M. Hoffman; Fritz J. Swenson; David Palmer Smitherman; R. E. Chrien; Robert W. Margevicius; Dan J. Thoma; Larry R. Foreman; James K. Hoffer; S. Robert Goldman; S. E. Caldwell; Thomas R. Dittrich; S. W. Haan; M. M. Marinak; Stephen M. Pollaine; Jorge J. Sanchez

Capsules with beryllium ablators have long been considered as alternatives to plastic for the National Ignition Facility laser ; now the superior performance of beryllium is becoming well substantiated. Beryllium capsules have the advantages of relative insensitivity to instability growth, low opacity, high tensile strength, and high thermal conductivity. 3-D calculation with the HYDRA code NTIS Document No. DE-96004569 (M. M. Marinak et.al. in UCRL-LR-105821-95-3) confirm 2-D LASNEX U. B. Zimmerman and W. L. Kruer, Comments Plasmas Phys. Controlled Thermonucl. Fusion, 2, 51(2975) results that particular beryllium capsule designs are several times less sensitive than the CH point design to instability growth from DT ice roughness. These capsule designs contain more ablator mass and leave some beryllium unablated at ignition. By adjusting the level of copper dopant, the unablated mass can increase or decrease, with a corresponding decrease or increase in sensitivity to perturbations. A plastic capsule with the same ablator mass as the beryllium and leaving the same unablated mass also shows this reduced perturbation sensitivity. Beryllium`s low opacity permits the creation of 250 eV capsule designs. Its high tensile strength allows it to contain DT fuel at room temperature. Its high thermal conductivity simplifies cryogenic fielding.


Review of Scientific Instruments | 2006

Development of nuclear diagnostics for the National Ignition Facility (invited)

V. Yu. Glebov; D. D. Meyerhofer; T. C. Sangster; C. Stoeckl; S. Roberts; C. A. Barrera; J. Celeste; Charles Cerjan; Lucile S. Dauffy; David C. Eder; R. L. Griffith; S. W. Haan; B. A. Hammel; S. P. Hatchett; N. Izumi; J. R. Kimbrough; J. A. Koch; O. L. Landen; R. A. Lerche; B. J. MacGowan; M. J. Moran; E. W. Ng; Thomas W. Phillips; P. Song; R. Tommasini; B. K. Young; S. E. Caldwell; Gary P. Grim; S. C. Evans; J. M. Mack

The National Ignition Facility (NIF) will provide up to 1.8MJ of laser energy for imploding inertial confinement fusion (ICF) targets. Ignited NIF targets are expected to produce up to 1019 DT neutrons. This will provide unprecedented opportunities and challenges for the use of nuclear diagnostics in ICF experiments. In 2005, the suite of nuclear-ignition diagnostics for the NIF was defined and they are under development through collaborative efforts at several institutions. This suite includes PROTEX and copper activation for primary yield measurements, a magnetic recoil spectrometer and carbon activation for fuel areal density, neutron time-of-flight detectors for yield and ion temperature, a gamma bang time detector, and neutron imaging systems for primary and downscattered neutrons. An overview of the conceptual design, the developmental status, and recent results of prototype tests on the OMEGA laser will be presented.


Physics of Plasmas | 1999

Shock structuring due to fabrication joints in targets

S. R. Goldman; S. E. Caldwell; Mark D. Wilke; D. C. Wilson; Cris W. Barnes; W. W. Hsing; Norman D. Delamater; G. T. Schappert; J. W. Grove; E. L. Lindman; J. M. Wallace; R. P. Weaver; A. M. Dunne; M. J. Edwards; P. Graham; B. R. Thomas

The use of copper-doped beryllium ablators on National Ignition Facility [J. A. Paisner et al., Laser Focus World 30, 75 (1994)] targets, in place of plastic, can require the bonding together of hemispheres with a joint of differing composition. Indirect drive experiments have been conducted on the Nova laser [J. L. Emmet, W. F. Krupke, and J. B. Trenholme, Sov. J. Quantum Electron. 13, 1 (1983)], and the resulting shock structuring compared with code simulations. It is concluded that one of the available codes, the RAGE code [R. M. Baltrusaitis et al., Phys. Fluids 8, 2471 (1996)] provides useful insight into the effect of joints. This code is then employed to obtain a physical picture of the shock front nonuniformity in terms of a secondary rarefaction and an oblique shock interacting with the main shock that propagates in the absence of the joint. A simple analysis reinforces this picture.


Physics of Plasmas | 2009

Anomalous yield reduction in direct-drive deuterium/tritium implosions due to H3e additiona)

H. W. Herrmann; James R. Langenbrunner; J. M. Mack; J.H. Cooley; D. C. Wilson; S. C. Evans; T. J. Sedillo; G. A. Kyrala; S. E. Caldwell; C. S. Young; A. Nobile; Joseph R. Wermer; Stephen N. Paglieri; A. McEvoy; Y. Kim; S. H. Batha; C. J. Horsfield; D.W. Drew; Warren Garbett; M. S. Rubery; V. Yu. Glebov; S. Roberts; J. A. Frenje

Glass capsules were imploded in direct drive on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)] to look for anomalous degradation in deuterium/tritium (DT) yield and changes in reaction history with H3e addition. Such anomalies have previously been reported for D/H3e plasmas but had not yet been investigated for DT/H3e. Anomalies such as these provide fertile ground for furthering our physics understanding of inertial confinement fusion implosions and capsule performance. Anomalous degradation in the compression component of yield was observed, consistent with the “factor of 2” degradation previously reported by Massachusetts Institute of Technology (MIT) at a 50% H3e atom fraction in D2 using plastic capsules [Rygg, Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT but consistent with Los Alamos National Laboratory results in D2/H3e [Wilson et al., J. Phys.: Conf....


Review of Scientific Instruments | 2001

Nuclear diagnostics for the National Ignition Facility (invited)

T. J. Murphy; Cris W. Barnes; R. R. Berggren; P. A. Bradley; S. E. Caldwell; R. E. Chrien; J. R. Faulkner; Peter L. Gobby; Nelson M. Hoffman; J. L. Jimerson; K. A. Klare; C. L. Lee; J. M. Mack; George L. Morgan; John A. Oertel; F. J. Swenson; Peter J. Walsh; R. B. Walton; Robert G. Watt; Mark D. Wilke; D. C. Wilson; C. S. Young; S. W. Haan; R. A. Lerche; M. J. Moran; Thomas W. Phillips; Thomas C. Sangster; R. J. Leeper; C. L. Ruiz; G. W. Cooper

The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, will provide unprecedented opportunities for the use of nuclear diagnostics in inertial confinement fusion experiments. The completed facility will provide 2 MJ of laser energy for driving targets, compared to the approximately 40 kJ that was available on Nova and the approximately 30 kJ available on Omega. Ignited NIF targets are anticipated to produce up to 1019 DT neutrons. In addition to a basic set of nuclear diagnostics based on previous experience, these higher NIF yields are expected to allow innovative nuclear diagnostic techniques to be utilized, such as neutron imaging, recoil proton techniques, and gamma-ray-based reaction history measurements.


Review of Scientific Instruments | 2003

Observation of d-t fusion gamma rays (invited)

S. E. Caldwell; R. R. Berggren; B. A. Davis; S. C. Evans; J. R. Faulkner; J. A. Garcia; R. L. Griffith; D.K. Lash; R. A. Lerche; J. M. Mack; George L. Morgan; K. J. Moy; J. A. Ortel; R. E. Sturges; C. S. Young

Deuterium–tritium (DT) reaction rates of imploding capsules have historically been measured using neutron detectors. Temporal resolution is limited by the size of the detector and distance from the source to detector. The reaction rates can also be measured using the 16.7 MeV gamma ray, which is produced by the same DT reaction, but statistically far less often than the 14.1 MeV neutron. Cherenkov detectors detect gamma rays by converting the gamma rays to electrons, which in turn produce Cherenkov light and record this visible light using a fast optical detector. These detectors can be scaled to large volumes in order to increase detection efficiency with little degradation in time resolution, and placed well away from the source since gamma rays do not suffer velocity dispersion between the source and detector. Gas-based Cherenkov detectors can also discriminate against lower-energy photons produced in and around the target. A prototype gas Cherenkov detector has been built and tested for detector respo...


Review of Scientific Instruments | 2001

Gamma-ray-based fusion burn measurements

R. R. Berggren; S. E. Caldwell; J. R. Faulkner; R. A. Lerche; J. M. Mack; K. J. Moy; John A. Oertel; C. S. Young

A gas Cerenkov detector with a 12-MeV threshold for gamma-raydetection has been built for use on the OMEGA laser system to record high-energy gamma rays emitted during DT gas burn. Recording the 16.7-MeV gamma ray while discriminating against the lower energy 14-MeV neutron-induced gammas is an important objective using this detector system. Detector design, sensitivity, and background studies were possible using the Integrated Tiger Series Monte Carlo code modified to include Cerenkov production and full time-history of all particles. The results of this code were iterated with the ASAP optics code to optimize the light collection system, while providing the radiation shielding and stray light baffles to minimize backgrounds. As an initial test of the instrument, 8–20 MeV electrons from the Idaho State University linear accelerator were used in lieu of gamma rays. The primary results of these tests are that electron-produced Cerenkov has been observed and the Cerenkov threshold curve established for this instrument.


Review of Scientific Instruments | 2006

Multiplexed gas Cherenkov detector for reaction-history measurements

J. M. Mack; S. E. Caldwell; S. C. Evans; T. J. Sedillo; D. C. Wilson; C. S. Young; C. J. Horsfield; R. L. Griffith; R. A. Lerche

A diagnostic is being designed for the National Ignition Facility, using fusion gamma rays to measure highly time-resolved bang times and deuterium-tritium (d-t) interaction rates for imploding inertial fusion capsules. As a complement to neutron-based methods, gas Cherenkov detectors were chosen for this purpose because of proven ultrahigh bandwidth, thresholding versatility, and minimal time-of-flight dispersion. Gas Cherenkov detector prototypes, involving streak cameras and fast photomultiplier, microchannel plate detectors, are being tested using d-t implosions at the Omega Laser Facility. The possibility of simultaneous streak camera and photomultiplier, microchannel plate recordings of a source in one gas Cherenkov detector instrument is advantageous for reasons of independent measurement and extended reaction-history coverage. A multiplexed gas Cherenkov detector system was demonstrated successfully using electron pulses produced by the Idaho State University linear electron accelerator. A reactio...


Physics of Plasmas | 2012

D-T gamma-to-neutron branching ratio determined from inertial confinement fusion plasmasa)

Y. Kim; J. M. Mack; H. W. Herrmann; Cliff Young; Gerry Hale; S. E. Caldwell; Nelson M. Hoffman; Steve Evans; T. J. Sedillo; A. McEvoy; James R. Langenbrunner; H. H. Hsu; M. A. Huff; S. H. Batha; C. J. Horsfield; M. S. Rubery; Warren Garbett; W. Stoeffl; E. Grafil; Lee Allen Bernstein; J. A. Church; D. B. Sayre; M. Rosenberg; C. Waugh; H. G. Rinderknecht; M. Gatu Johnson; A. Zylstra; J. A. Frenje; D. T. Casey; R. D. Petrasso

A new deuterium-tritium (D-T) fusion gamma-to-neutron branching ratio [3H(d,γ)5He/3H(d,n)4He] value of (4.2 ± 2.0) × 10−5 was recently reported by this group [Y. Kim et al. Phys. Rev. C (submitted)]. This measurement, conducted at the OMEGA laser facility located at the University of Rochester, was made for the first time using inertial confinement fusion (ICF) plasmas. Neutron-induced backgrounds are significantly reduced in these experiments as compared to traditional beam-target accelerator-based experiments due to the short pulse nature of ICF implosions and the use of gas Cherenkov γ-ray detectors with fast temporal responses and inherent energy thresholds. It is expected that this ICF-based measurement will help resolve the large and long-standing inconsistencies in previously reported accelerator-based values, which vary by a factor of approximately 30. The reported value at ICF conditions was determined by averaging the results of two methods: (1) a direct measurement of ICF D-T γ-ray and neutron ...


Physics of Plasmas | 2000

Production of enhanced pressure regions due to inhomogeneities in inertial confinement fusion targets

S. R. Goldman; Cris W. Barnes; S. E. Caldwell; D. C. Wilson; S. H. Batha; J. W. Grove; M. L. Gittings; W. W. Hsing; R. J. Kares; K. A. Klare; G. A. Kyrala; Robert W. Margevicius; R. P. Weaver; Mark D. Wilke; A. M. Dunne; M. J. Edwards; P. Graham; B. R. Thomas

It is shown that regions of enhanced pressure have been produced in targets with indirect radiation drive in planar and cylindrically convergent geometry through the interaction between the flows caused by target inhomogeneities and the main target drive. Design calculations for National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)] targets with beryllium ablators formed by bonded hemi-shells [D. C. Wilson et al., Bull. Am. Phys. Soc. 43, 1667 (1998)] indicate that related behavior produces a seed perturbation in the ablator which can in some cases lead to the suppression of ignition. From simulation and analysis of the NIF problem in the planar geometry analog, a scaling for the perturbation, which should be useful for validation of the behavior with lower energy drive and smaller-scale geometries, is derived.

Collaboration


Dive into the S. E. Caldwell's collaboration.

Top Co-Authors

Avatar

J. M. Mack

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. S. Young

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. C. Evans

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. A. Lerche

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. R. Berggren

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. J. Horsfield

Atomic Weapons Establishment

View shared research outputs
Top Co-Authors

Avatar

T. J. Sedillo

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

H. W. Herrmann

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. R. Faulkner

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mark D. Wilke

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge