Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. F. Khan is active.

Publication


Featured researches published by S. F. Khan.


Physics of Plasmas | 2014

The high-foot implosion campaign on the National Ignition Facilitya)

O. A. Hurricane; D. A. Callahan; D. T. Casey; E. L. Dewald; T. R. Dittrich; T. Döppner; M. A. Barrios Garcia; D. E. Hinkel; L. Berzak Hopkins; P. Kervin; J. L. Kline; S. Le Pape; T. Ma; A. G. MacPhee; J. L. Milovich; J. D. Moody; A. Pak; P. K. Patel; H.-S. Park; B. A. Remington; H. F. Robey; J. D. Salmonson; P. T. Springer; R. Tommasini; L. R. Benedetti; J. A. Caggiano; Peter M. Celliers; C. Cerjan; Rebecca Dylla-Spears; D. H. Edgell

The “High-Foot” platform manipulates the laser pulse-shape coming from the National Ignition Facility laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This strategy gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. In this paper, we will cover the various experimental and theoretical motivations for the high-foot drive as well as cover the experimental results that have come out of the high-foot experimental campaign. At the time of this writing, the high-foot implosion has demonstrated record total deuterium-tritium yields (9.3×1015) with low levels of inferred mix, excellent agreement with implosion simulations, fuel energy gains exceeding unity, and evidenc...


Physics of Plasmas | 2012

Implosion dynamics measurements at the National Ignition Facility

Damien G. Hicks; N. B. Meezan; E. L. Dewald; A. J. Mackinnon; R.E. Olson; D. A. Callahan; T. Döppner; L. R. Benedetti; D. K. Bradley; Peter M. Celliers; D. S. Clark; P. Di Nicola; S. N. Dixit; E. G. Dzenitis; J. E. Eggert; D. R. Farley; J. A. Frenje; S. Glenn; S. H. Glenzer; Alex V. Hamza; R. F. Heeter; J. P. Holder; N. Izumi; D. H. Kalantar; S. F. Khan; J. L. Kline; J. J. Kroll; G. A. Kyrala; T. Ma; A. G. MacPhee

Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1–1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsu...


Physics of Plasmas | 2014

High-density carbon ablator experiments on the National Ignition Facilitya)

A. J. Mackinnon; N. B. Meezan; J. S. Ross; S. Le Pape; L. Berzak Hopkins; L. Divol; D. Ho; J. Milovich; A. Pak; J. E. Ralph; T. Döppner; P. K. Patel; C. A. Thomas; R. Tommasini; S. Haan; A. G. MacPhee; J. McNaney; J. Caggiano; R. Hatarik; R. Bionta; T. Ma; B. Spears; J. R. Rygg; L. R. Benedetti; R. P. J. Town; D. K. Bradley; E. L. Dewald; D. Fittinghoff; O. S. Jones; H. R. Robey

High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5 g/cc) than plastic (CH, 1 g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2 mg/cc He gas, produce neutron yields a factor of 2× higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He = 0.03 mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity = 410 ± 20 km/s with no observed ablator mixing into the hot spot.


Physics of Plasmas | 2014

Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facilitya)

R. P. J. Town; D. K. Bradley; A. L. Kritcher; O. S. Jones; J. R. Rygg; R. Tommasini; M. A. Barrios; L. R. Benedetti; L. Berzak Hopkins; Peter M. Celliers; T. Döppner; E. L. Dewald; David C. Eder; J. E. Field; S. M. Glenn; N. Izumi; S. W. Haan; S. F. Khan; J. L. Kline; G. A. Kyrala; T. Ma; J. L. Milovich; J. D. Moody; S. R. Nagel; A. Pak; J. L. Peterson; H. F. Robey; J. S. Ross; R. H. H. Scott; B. K. Spears

In order to achieve ignition using inertial confinement fusion it is important to control the growth of low-mode asymmetries as the capsule is compressed. Understanding the time-dependent evolution of the shape of the hot spot and surrounding fuel layer is crucial to optimizing implosion performance. A design and experimental campaign to examine sources of asymmetry and to quantify symmetry throughout the implosion has been developed and executed on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We have constructed a large simulation database of asymmetries applied during different time intervals. Analysis of the database has shown the need to measure and control the hot-spot shape, areal density distribution, and symmetry swings during the implosion. The shape of the hot spot during final stagnation is measured using time-resolved imaging of the self-emission, and information on the shape of the fuel at stagnation can be obtained from Compton radiography [R. Tommasini et al., Phys. Plasmas 18, 056309 (2011)]. For the first time on NIF, two-dimensional inflight radiographs of gas-filled and cryogenic fuel layered capsules have been measured to infer the symmetry of the radiation drive on the capsule. These results have been used to modify the hohlraum geometry and the wavelength tuning to improve the inflight implosion symmetry. We have also expanded our shock timing capabilities by the addition of extra mirrors inside the re-entrant cone to allow the simultaneous measurement of shock symmetry in three locations on a single shot, providing asymmetry information up to Legendre mode 4. By diagnosing the shape at nearly every step of the implosion, we estimate that shape has typically reduced fusion yield by about 50% in ignition experiments.


Physics of Plasmas | 2015

Effect of the mounting membrane on shape in inertial confinement fusion implosions

S. R. Nagel; S. W. Haan; J. R. Rygg; M. A. Barrios; L. R. Benedetti; D. K. Bradley; J. E. Field; B. A. Hammel; N. Izumi; O. S. Jones; S. F. Khan; T. Ma; A. Pak; R. Tommasini; R. P. J. Town

The performance of Inertial Confinement Fusion targets relies on the symmetric implosion of highly compressed fuel. X-ray area-backlit imaging is used to assess in-flight low mode 2D asymmetries of the shell. These time-resolved images of the shell exhibit features that can be related to the lift-off position of the membranes used to hold the capsule within the hohlraum. Here, we describe a systematic study of this membrane or “tent” thickness and its impact on the measured low modes for in-flight and self-emission images. The low mode amplitudes of the shell in-flight shape (P2 and P4) are weakly affected by the tent feature in time-resolved, backlit data. By contrast, time integrated self-emission images along the same axis exhibit a reversal in perceived P4 mode due to growth of a feature seeded by the tent, which can explain prior inconsistencies between the in-flight P4 and core P4, leading to a reevaluation of optimum hohlraum length. Simulations with a tent-like feature normalized to match the feat...


Physics of Plasmas | 2015

Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa)

L. Berzak Hopkins; S. Le Pape; L. Divol; N. B. Meezan; A. J. Mackinnon; D. Ho; O. S. Jones; S. F. Khan; J. L. Milovich; J. S. Ross; Peter A. Amendt; D. T. Casey; Peter M. Celliers; A. Pak; J. L. Peterson; J. E. Ralph; J. R. Rygg

Recent experiments at the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] have explored driving high-density carbon ablators with near-vacuum hohlraums, which use a minimal amount of helium gas fill. These hohlraums show improved efficiency relative to conventional gas-filled hohlraums in terms of minimal backscatter, minimal generation of suprathermal electrons, and increased hohlraum-capsule coupling. Given these advantages, near-vacuum hohlraums are a promising choice for pursuing high neutron yield implosions. Long pulse symmetry control, though, remains a challenge, as the hohlraum volume fills with material. Two mitigation methodologies have been explored, dynamic beam phasing and increased case-to-capsule ratio (larger hohlraum size relative to capsule). Unexpectedly, experiments have demonstrated that the inner laser beam propagation is better than predicted by nominal simulations, and an enhanced beam propagation model is required to match measured hot spot symm...


Physics of Plasmas | 2013

Hohlraum energetics scaling to 520 TW on the National Ignition Facility

J. L. Kline; D. A. Callahan; S. H. Glenzer; N. B. Meezan; J. D. Moody; D. E. Hinkel; O. S. Jones; A. J. Mackinnon; R. Bennedetti; R. L. Berger; D. K. Bradley; E. L. Dewald; I. Bass; C. Bennett; M. W. Bowers; G. K. Brunton; J. Bude; S. C. Burkhart; A. Condor; J. M. Di Nicola; P. Di Nicola; S. N. Dixit; T. Doeppner; E. G. Dzenitis; G. V. Erbert; J. Folta; G. P. Grim; S. Glenn; Alex V. Hamza; S. W. Haan

Indirect drive experiments have now been carried out with laser powers and energies up to 520 TW and 1.9 MJ. These experiments show that the energy coupling to the target is nearly constant at 84% ± 3% over a wide range of laser parameters from 350 to 520 TW and 1.2 to 1.9 MJ. Experiments at 520 TW with depleted uranium hohlraums achieve radiation temperatures of ∼330 ± 4 eV, enough to drive capsules 20 μm thicker than the ignition point design to velocities near the ignition goal of 370 km/s. A series of three symcap implosion experiments with nearly identical target, laser, and diagnostics configurations show the symmetry and drive are reproducible at the level of ±8.5% absolute and ±2% relative, respectively.


Proceedings of SPIE | 2012

Measuring x-ray burn history with the Streaked Polar Instrumentation for Diagnosing Energetic Radiation (SPIDER) at the National Ignition Facility (NIF)

S. F. Khan; P. M. Bell; D. K. Bradley; Scott Burns; J. Celeste; L. S. Dauffy; Mark J. Eckart; M. A. Gerhard; C. Hagmann; D. I. Headley; J. P. Holder; N. Izumi; M. C. Jones; J. W. Kellogg; Hesham Khater; J. R. Kimbrough; A. G. MacPhee; Y. P. Opachich; N. E. Palmer; R. B. Petre; John L. Porter; Randy T. Shelton; T. L. Thomas; J. Worden

We present a new diagnostic for the National Ignition Facility (NIF) [1,2]. The Streaked Polar Instrumentation for Diagnosing Energetic Radiation (SPIDER) is an x-ray streak camera for use on almost-igniting targets, up to ~1017 neutrons per shot. It measures the x-ray burn history for ignition campaigns with the following requirements: X-Ray Energy 8-30keV, Temporal Resolution 10ps, Absolute Timing Resolution 30ps, Neutron Yield: 1014 to 1017. The features of the design are a heavily shielded instrument enclosure outside the target chamber, remote location of the neutron and EMP sensitive components, a precise laser pulse comb fiducial timing system and fast streaking electronics. SPIDER has been characterized for sweep linearity, dynamic range, temporal and spatial resolution. Preliminary DT implosion data shows the functionality of the instrument and provides an illustration of the method of burn history extraction.


Physics of Plasmas | 2017

Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity

L. Divol; A. Pak; L. Berzak Hopkins; S. Le Pape; N. B. Meezan; E. L. Dewald; D. Ho; S. F. Khan; A. J. Mackinnon; J. S. Ross; D. P. Turnbull; C. R. Weber; Peter M. Celliers; M. Millot; L. R. Benedetti; J. E. Field; N. Izumi; G. A. Kyrala; T. Ma; S. R. Nagel; J. R. Rygg; D. H. Edgell; A. G. MacPhee; C. Goyon; M. Hohenberger; B. J. MacGowan; P. Michel; D. J. Strozzi; W. S. Cassata; D. T. Casey

We report on the most recent and successful effort at controlling the trajectory and symmetry of a high density carbon implosion at the National Ignition Facility. We use a low gasfill (0.3 mg/cc He) bare depleted uranium hohlraum with around 1 MJ of laser energy to drive a 3-shock-ignition relevant implosion. We assess drive performance and we demonstrate symmetry control at convergence 1, 3–5, 12, and 27 to better than ±5 μm using a succession of experimental platforms. The symmetry control was maintained at a peak fuel velocity of 380 km/s. Overall, implosion symmetry measurements are consistent with the pole-equator symmetry of the X-ray drive on the capsule being better than 5% in the foot of the drive (when shocks are launched) and better than 1% during peak drive (main acceleration phase). This level of residual asymmetry should have little impact on implosion performance.


Physics of Plasmas | 2015

Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

N. B. Meezan; L. Berzak Hopkins; S. Le Pape; L. Divol; A. J. Mackinnon; T. Döppner; D. Ho; O. S. Jones; S. F. Khan; T. Ma; J. L. Milovich; A. Pak; J. S. Ross; C. A. Thomas; L.R. Benedetti; D. K. Bradley; Peter M. Celliers; D. S. Clark; J. E. Field; S. W. Haan; N. Izumi; G. A. Kyrala; J. D. Moody; P. K. Patel; J. E. Ralph; J. R. Rygg; S. M. Sepke; B. K. Spears; R. Tommasini; R. P. J. Town

High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT i...

Collaboration


Dive into the S. F. Khan's collaboration.

Top Co-Authors

Avatar

T. Ma

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

N. Izumi

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. K. Bradley

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

L. R. Benedetti

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

L. Berzak Hopkins

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. A. Callahan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. L. Dewald

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. G. MacPhee

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Pak

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. T. Casey

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge