Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. John Gatley is active.

Publication


Featured researches published by S. John Gatley.


European Journal of Pharmacology | 1996

123I-labeled AM251: a radioiodinated ligand which binds in vivo to mouse brain cannabinoid CB1 receptors

S. John Gatley; Andrew N. Gifford; Nora D. Volkow; Ruoxi Lan; Alexandros Makriyannis

We have investigated the binding of 123I-labeled N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methy l-1 H-pyrazole-3-carboxamide (AM251), an analog of the cannabinoid receptor antagonist SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1 H-pyrazole-3-carboxamide] in the mouse brain. Following intravenous injection, the peak whole-brain uptake of about 1% of the administered activity occurred at about 2 h. By 8 h radioactivity in brain had declined to about half its peak value. High-performance liquid chromatographic analysis showed that > 70% of radioactivity extracted from brain at 2 h was still present as [123I]AM251. Co-injection of SR141716A inhibited the in vivo brain binding of [123I]AM251 dose dependently. At 2 mg/kg, the highest dose that could be tested, inhibition was 50% at 2 h post-administration. The ED50 value calculated assuming that 2 mg/kg gave near-maximal inhibition was about 0.1 mg/kg. In contrast to the brain, radioactivity in other major organs (blood, liver, kidney, heart and lung) was little affected by SR141716A. The regional binding of [123I]AM251 in the brain was consistent with the published distribution of cannabinoid receptors in rat brain, in that the order was hippocampus, striatum > cerebellum > brain stem. delta 9-Tetrahydrocannabinol co-administered intravenously at 10 mg/kg, a dose which induced catalepsy and decreased locomotor activity, decreased the 2 h brain uptake of [123I]AM251 by 10%, but this was not significant (P = 0.08). In in vitro binding assays with mouse hippocampal membranes, tetrahydrocannabinol inhibited binding of [123I]AM251 with an IC50 value of about 700 nM, compared with about 0.2 nM for SR141716A.


Life Sciences | 1996

Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters.

S. John Gatley; Dongfeng Pan; Ruoyan Chen; Gaurav Chaturvedi; Yu-Shin Ding

We have synthesized several derivative of dl-threo-methylphenidate (Ritalin) bearing substituents on the phenyl ring. IC50 values for binding these compounds to rat brain monoamine transporters were assessed using [3H]WIN 35,428 (striatal membranes, dopamine transporters, DAT), [3H]nisoxetine (frontal cortex membranes, norepinephrine transporters, NET) and [3H]paroxetine (brain stem membranes, 5HT transporters, 5HTT). Affinities (1/Ki) decreased in the order: DAT > NET >> 5HTT. Substitution at the para position of dl-threo-methylphenidate generally led to retained or increased affinity for the dopamine transporter (bromo > iodo > methoxy > hydroxy). Substitution at the meta position also increased affinity for the DAT (m-bromo > methylphenidate; m-iodo-p-hydroxy > p-hydroxy). Substitution at the ortho position with bromine considerably decreased affinity. Similar IC50 values for binding of o-bromomethylphenidate to the dopamine transporter were measured at 0, 22 and 37 degrees. N-Methylation of the piperidine ring of methylphenidate also considerably reduced affinity. The dl-erythro isomer of o-bromomethylphenidate did not bind to the DAT (IC50 > 50,000 nM). Affinities at the dopamine and norepinephrine transporters for substituted methylphenidate derivatives were well correlated (r2=0.90). Abilities of several methylphenidate derivatives to inhibit [3H]dopamine uptake in striatal synaptosomes corresponded well with inhibition of [3H]WIN 35, 428 binding. None of the compounds examined exhibited significant affinity to dopamine D1 or D2 receptors (IC50 > 500 or 5,000 nM, respectively), as assessed by inhibition of binding of [3H]SCH 23390 or [123I]epidepride, respectively, to striatal membranes.


Journal of Cerebral Blood Flow and Metabolism | 1994

Effects of Blood Flow on [11C]Raclopride Binding in the Brain: Model Simulations and Kinetic Analysis of PET Data

Jean Logan; Nora D. Volkow; Joanna S. Fowler; Gene Jack Wang; Stephen L. Dewey; Robert R. MacGregor; David J. Schlyer; S. John Gatley; Naomi Pappas; Payton King; Robert Hitzemann; Stephen A. Vitkun

To assess the stability of different measures of receptor occupancy from [11C]raclopride (a D2 antagonist) studies with positron emission tomography, we analyze data from five test/retest studies in normal volunteers in terms of individual model parameters from a three-compartment model, the distribution volume (DV) and the ratio of DVs from a receptor-containing region of interest to a non-receptor-containing region. Large variations were found in the individual model parameters, limiting their usefulness as an indicator of change in receptor systems. The DV ratio showed the smallest variation. Individual differences were reflected in the greater intersubject variation in DV than intrasubject variation. The potential effects of blood flow on these measurements were addressed both experimentally and by simulation studies using three models that explicitly incorporate blood flow into a compartmental model that also includes receptor–ligand binding. None of the models showed any variation in the DV with changes in blood flow as long as flow was held constant during the simulation. Experimentally, blood flow was significantly reduced by hyperventilation in a human subject. The DV was found to be reduced relative to baseline in the hyperventilation study, but the DV ratio remained unchanged. The effect of elevated and reduced flow was also tested in two baboon experiments in which Pco2 was varied. Some variability in the DV ratio was observed but was not correlated with changes in blood flow. This raises the possibility that other factors indirectly related to changes in blood flow (or Pco2) may cause changes in DV, and these effects need to be considered when evaluating experimental results.


Life Sciences | 1997

Binding of the non-classical cannabinoid CP 55,940, and the diarylpyrazole AM251 to rodent brain cannabinoid receptors

S. John Gatley; Ruoxi Lan; Beatrice Pyatt; Andrew N. Gifford; Nora D. Volkow; Alexandros Makriyannis

The binding of [123I]AM251 (a radioiodinated analog of the cannabinoid CB1 receptor antagonist SR141716A) was compared to that of [3H]CP 55,940 in mouse and rat brain preparations. Scatchard analysis of the binding of [123I]AM251 and [3H]CP 55,940 to membranes prepared from mouse cerebellum, striatum and hippocampus yielded similar Bmax values (15-41 pmol/g wet wt tissue). Kd values were lower for [123I]AM251 (0.23-0.62 nM) than for [3H]CP 55,940 (1.3-4 nM). CP 55,940 and SR141716A increased dissociation of [123I]AM251 from binding sites in mouse cerebellar homogenates to a similar extent. The structurally dissimilar cannabinoid receptor ligands THC, methanandamide, WIN 55, 212-2, CP 55,940 and SR141716A were each able to fully compete with binding of both [123I]AM251 and [3H]CP 55,940 in mouse cerebellum. In vitro autoradiography demonstrated that the distribution of binding sites for [123I]AM251 in rat brain was very similar to published distributions of binding sites for [3H]CP 55,940. Together, these observations suggest that AM251 binds to the same site (the cannabinoid CB1 receptor) in rodent brains as CP 55,940. However, the binding site domains which interact with AM251 and CP 55,940 may not be identical, since IC50 values for cannabinoid receptor ligands depended on whether [123I]AM251 or [3H]CP 55,940 was used as radioligand.


Journal of Neurochemistry | 2002

Imaging the Brain Marijuana Receptor: Development of a Radioligand that Binds to Cannabinoid CB1 Receptors In Vivo

S. John Gatley; Ruoxi Lan; Nora D. Volkow; Naomi Pappas; Payton King; Christopher Wong; Andrew N. Gifford; Beatrice Pyatt; Stephen L. Dewey; Alexandros Makriyannis

Abstract: The major active ingredient of marijuana, (−)‐Δ9‐tetrahydrocannabinol, exerts its psychoactive effects via binding to cannabinoid CB1 receptors, which are widely distributed in the brain. Radionuclide imaging of CB1 receptors in living human subjects would help explore the presently unknown physiological roles of this receptor system, as well as the neurochemical consequences of marijuana dependence. Currently available cannabinoid receptor radioligands are exceedingly lipophilic and unsuitable for in vivo use. We report the development of a novel radioligand, [123I]AM281{N‐(morpholin‐4‐yl)‐5‐(4‐[123I]iodophenyl)‐1‐(2,4‐dichlorophenyl)‐4‐methyl‐1H‐pyrazole‐3‐carboxamide}, that is structurally related to the CB1‐selective antagonist SR141716A [N‐(piperidin‐1‐yl)‐5‐(4‐chlorophenyl)‐1‐(2,4‐dichlorophenyl)‐4‐methyl‐1H‐pyrazole‐3‐carboxamide]. Baboon single photon emission computed tomography studies, mouse brain dissection studies, and ex vivo autoradiography in rat brain demonstrated rapid passage of [123I]AM281 into the brain after intravenous injection, appropriate regional brain specificity of binding, and reduction of binding after treatment with SR141716A. AM281 has an affinity in the low nanomolar range for cerebellar binding sites labeled with [3H]SR141716A in vitro, and binding of [123I]AM281 is inhibited by several structurally distinct cannabinoid receptor ligands. We conclude that [123I]AM281 has appropriate properties for in vivo studies of cannabinoid CB1 receptors and is suitable for imaging these receptors in the living human brain.


Alcoholism: Clinical and Experimental Research | 2004

DRD2 gene transfer into the nucleus accumbens core of the alcohol preferring and nonpreferring rats attenuates alcohol drinking

Panayotis K. Thanos; Nicholas B. Taintor; Seth N. Rivera; Hiroyuki Umegaki; Hiroyuki Ikari; George S. Roth; Donald K. Ingram; Robert Hitzemann; Joanna S. Fowler; S. John Gatley; Gene Jack Wang; Nora D. Volkow

BACKGROUND Transient overexpression of the dopamine D2 receptor (DRD2) gene in the nucleus accumbens (NAc) using an adenoviral vector has been associated with a significant decrease in alcohol intake in Sprague Dawley rats. This overexpression of DRD2 reduced alcohol consumption in a two-bottle-choice paradigm and supported the view that high levels of DRD2 may be protective against alcohol abuse. METHODS Using a limited access (1 hr) two-bottle-choice (water versus 10% ethanol) drinking paradigm, we examined the effects of the DRD2 vector in alcohol intake in the genetically inbred alcohol-preferring (P) and -nonpreferring (NP) rats. In addition, micro-positron emission tomography imaging was used at the completion of the study to assess in vivo the chronic (7 weeks) effects of ethanol exposure on DRD2 levels between the two groups. RESULTS P rats that were treated with the DRD2 vector (in the NAc) significantly attenuated their alcohol preference (37% decrease) and intake (48% decrease), and these measures returned to pretreatment levels by day 20. A similar pattern of behavior (attenuation of ethanol drinking) was observed in NP rats. Analysis of the [C]raclopride micro-positron emission tomography data after chronic (7 weeks) exposure to ethanol revealed clear DRD2 binding differences between the P and NP rats. P rats showed 16% lower [C]raclopride specific binding in striatum than the NP rats. CONCLUSIONS These findings further support our hypothesis that high levels of DRD2 are causally associated with a reduction in alcohol consumption and may serve as a protective factor against alcoholism. That this effect was seen in P rats, which are predisposed to alcohol intake, suggests that they are protective even in those who are genetically predisposed to high alcohol intake. It is noteworthy that increasing DRD2 significantly decreased alcohol intake but did not abolish it, suggesting that high DRD2 levels may specifically interfere with the administration of large quantities of alcohol. The significantly higher DRD2 concentration in NP than P rats after 7 weeks of ethanol therefore could account for low alcohol intake.


Biochemical Pharmacology | 1991

Activities of the enantiomers of cocaine and some related compounds as substrates and inhibitors of plasma butyrylcholinesterase

S. John Gatley

The behaviors of the enantiomers of cocaine (benzoylecgonine methyl ester) and related compounds with butyrylcholinesterase (BChE; EC 3.1.1.8) were investigated spectrophotometrically at 235 nm. The unnatural enantiomer, (+)-cocaine, was hydrolyzed by BChE (extinction coefficient 6.7 L.mmol-1.cm-1) at about half the rate of benzoylcholine, but over 2000 times faster than naturally occurring (-)-cocaine. This rapid hydrolysis of (+)-cocaine may account, in part, for its pharmacological inactivity. (+)-Norcocaine, (+)-benzoylecgonine, (-)-psi-cocaine and tropacocaine were also substrates for BChE. Hydrolysis of (+)-cocaine was sensitive to several standard inhibitors of BChE, including those of competitive, carbamate and organophosphorus classes. Although (-)-cocaine was a poor substrate for debenzoylation, it was a fairly good competitive inhibitor (Ki approximately 10 microM) of the hydrolysis of other substrates. The cocaine metabolites (-)-norcocaine, (-)-benzoylecgonine and (-)-ecgonine methyl ester inhibited BChE with Ki values of 15, 76 and 1300 microM, respectively. (+)-psi-Cocaine had Ki = 3 microM, p-Nitro and p-fluoro derivatives of cocaine and analogs with phenyl and p-fluorophenyl groups in place of the benzoyl ester linkage (WIN 35,065-2 and WIN 35,428) inhibited BChE comparably to (-)-cocaine itself. Both cocaine enantiomers were weak inhibitors of acetylcholinesterase (AChE; EC 3.1.1.7) from human erythrocytes with similar Ki values (160-170 microM). Although it is unlikely that the inhibition of BChE is an important factor in the subjective effects of cocaine, it may have implications for the toxicity of cocaine to the fetus, since BChE appears in the development of the central nervous system before AChE, and has been suggested to function as an embryonic acetylcholinesterase.


European Journal of Pharmacology | 1997

Examination of the effect of the cannabinoid receptor agonist, CP 55,940, on electrically evoked transmitter release from rat brain slices.

Andrew N. Gifford; Laila Samiian; S. John Gatley; Charles R. Ashby

In the present study we examined the effect of the cannabinoid receptor agonist, [[1 a,2-(R)-5-(1,1-dimethylheptyl)-2-[5-hydroxy-2-(3-hydroxypropyl)cyc lohexyl]-phenol; CP 55,940] on [14C]acetylcholine and [3H]norepinephrine release from hippocampal slices and on [14C]acetylcholine release from striatal slices. CP 55,940 potently inhibited electrically evoked [14C]acetylcholine release from hippocampal slices, with an EC50 of 0.02 microM and a maximal inhibition of 61% at 1 microM. The inhibition of acetylcholine release by CP 55,940 was partially antagonized (60%) by the cannabinoid receptor antagonist, [[N-piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide hydrochloride; SR 141716A]. Alone, SR 141716A significantly enhanced stimulated [14C]acetylcholine release. In contrast to the effects of CP 55,940 on [14C]acetylcholine release, electrically evoked [3H]norepinephrine release from hippocampal slices and [14C]acetylcholine release from striatal slices were both unaffected by this compound. Similarly, hippocampal [3H]norepinephrine release and striatal [14C]acetylcholine release were not affected by SR 141716A. In conclusion, the results of this study extend our previous data indicating that cannabinoid receptors modulate acetylcholine release in the hippocampus. The effects of cannabinoid receptor activation on [3H]acetylcholine release in the hippocampus does not appear to extend to [3H]norepinephrine release from this region or to acetylcholine release from the striatum.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Low monoamine oxidase B in peripheral organs in smokers

Joanna S. Fowler; Jean Logan; Gene-Jack Wang; Nora D. Volkow; Frank Telang; Wei Zhu; Dinko Franceschi; Naomi Pappas; Richard A. Ferrieri; Colleen Shea; Victor Garza; Youwen Xu; David J. Schlyer; S. John Gatley; Yu-Shin Ding; David Alexoff; Donald Warner; Noelwah Netusil; Pauline Carter; Millard Jayne; Payton King; P. Vaska

One of the major mechanisms for terminating the actions of catecholamines and vasoactive dietary amines is oxidation by monoamine oxidase (MAO). Smokers have been shown to have reduced levels of brain MAO, leading to speculation that MAO inhibition by tobacco smoke may underlie some of the behavioral and epidemiological features of smoking. Because smoking exposes peripheral organs as well as the brain to MAO-inhibitory compounds, we questioned whether smokers would also have reduced MAO levels in peripheral organs. Here we compared MAO B in peripheral organs in nonsmokers and smokers by using positron emission tomography and serial scans with the MAO B-specific radiotracers,l-[11C]deprenyl and deuterium-substituted l-[11C]deprenyl (l-[11C]deprenyl-D2). Binding specificity was assessed by using the deuterium isotope effect. We found that smokers have significantly reduced MAO B in peripheral organs, particularly in the heart, lungs, and kidneys, when compared with nonsmokers. Reductions ranged from 33% to 46%. Because MAO B breaks down catecholamines and other physiologically active amines, including those released by nicotine, its inhibition may alter sympathetic tone as well as central neurotransmitter activity, which could contribute to the medical consequences of smoking. In addition, although most of the emphases on the carcinogenic properties of smoke have been placed on the lungs and the upper airways, this finding highlights the fact that multiple organs in the body are also exposed to pharmacologically significant quantities of chemical compounds in tobacco smoke.


Psychopharmacology | 2003

Cardiovascular effects of methylphenidate in humans are associated with increases of dopamine in brain and of epinephrine in plasma

Nora D. Volkow; Gene-Jack Wang; Joanna S. Fowler; Patricia E. Molina; Jean Logan; S. John Gatley; Andrew N. Gifford; Yu-Shin Ding; Christopher Wong; Naomi R. Pappas; Wei Zhu; James M. Swanson

RationaleThe cardiovascular effects of psychostimulant drugs (methylphenidate, amphetamine, cocaine) have been mostly associated with their noradrenergic effects. However, there is some evidence that dopaminergic effects are involved in the cardiovascular actions of these drugs. Here, we evaluated this association in humans.MethodsPositron emission tomography (PET) and [11C]raclopride, a dopamine (DA) D2 receptor radioligand that competes with endogenous DA for occupancy of the D2 receptors, were used to measure changes in brain DA after different doses of intravenous methylphenidate in 14 healthy subjects. Cardiovascular (heart rate and blood pressure) and catecholamine (plasma epinephrine and norepineprhine) responses were determined in parallel to assess their relationships to methylphenidate-induced changes in brain DA.ResultsMethylphenidate administration significantly increased heart rate, systolic and diastolic blood pressures and epinephrine concentration in plasma. The increases in blood pressure were significantly correlated with methylphenidate-induced increases of DA in striatum (r>0.78, P<0.001) and of plasma epinephrine levels (r>0.82, P<0.0005). In turn methylphenidate-induced DA increases in striatum were correlated with increases of epinephrine in plasma (r=0.85, P<0.0001). Subjects in whom methylphenidate did not increase DA had no change in blood pressure or in plasma epinephrine concentration.DiscussionThese results are consistent with the hypothesis that methylphenidate-induced increases in blood pressure are in part due to its central dopaminergic effects. They also suggest that methylphenidates pressor effects may be in part mediated by DA-induced increases in peripheral epinephrine.

Collaboration


Dive into the S. John Gatley's collaboration.

Top Co-Authors

Avatar

Nora D. Volkow

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Joanna S. Fowler

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu-Shin Ding

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andrew N. Gifford

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gene-Jack Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Colleen Shea

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stephen L. Dewey

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David J. Schlyer

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Naomi Pappas

Brookhaven National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge