Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. K. Sundaram is active.

Publication


Featured researches published by S. K. Sundaram.


Advances in Optics and Photonics | 2015

Ultrafast laser processing of materials: a review

Katherine C. Phillips; Hemi H. Gandhi; Eric Mazur; S. K. Sundaram

We present an overview of the different processes that can result from focusing an ultrafast laser light in the femtosecond–nanosecond time regime on a host of materials, e.g., metals, semiconductors, and insulators. We summarize the physical processes and surface and bulk applications and highlight how femtosecond lasers can be used to process various materials. Throughout this paper, we will show the advantages and disadvantages of using ultrafast lasers compared with lasers that operate in other regimes and demonstrate their potential for the ultrafast processing of materials and structures.


RSC Advances | 2011

Chalcogen -based aerogels as a multifunctional platform for remediation of radioactive iodine

Brian J. Riley; Jaehun Chun; Joseph V. Ryan; Josef Matyas; Xiaohong S. Li; Dean W. Matson; S. K. Sundaram; Denis M. Strachan; John D. Vienna

Aerogels employing chalcogen-based (i.e., S, Se, and/or Te) structural units and interlinking metals are termed chalcogels and have many emerging applications. Here, chalcogels are discussed in the context of nuclear fuel reprocessing and radioactive waste remediation. Motivated by previous work on removal of heavy metals in aqueous solution, we explored the application of germanium sulfide chalcogels as a sorbent for gas-phase I2 based on Pearsons Hard/Soft Acid–Base (HSAB) principle. This work was driven by a significant need for high-efficiency sorbents for 129I, a long-lived isotope evolved during irradiated UO2 nuclear fuel reprocessing. These chalcogel compositions are shown to possess an affinity for iodine gas, I2(g), at various concentrations in air. This affinity is attributed to a strong chemical attraction between the chalcogen and I2(g), according to the HSAB principle. The high sorption efficiency is facilitated by the high porosity as well as the exceptionally large surface area of the chalcogels. This paper briefly discusses the current and alternative waste forms for 129I, elaborates on preliminary work to evaluate a Pt-Ge-S chalcogel as a I2(g) sorbent, and discusses the unknown chalcogel properties related to these materials in waste form.


Philosophical Magazine | 2010

Structural model of homogeneous As–S glasses derived from Raman spectroscopy and high-resolution XPS

R. Golovchak; O. Shpotyuk; John S. McCloy; Brian J. Riley; Charles F. Windisch; S. K. Sundaram; A. Kovalskiy; H. Jain

The structure of homogeneous bulk As x S100− x (25 ≤ x ≤ 42) glasses, prepared by the conventional rocking–melting–quenching method, was investigated using high-resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It is shown that the main building blocks of their glass networks are regular AsS3/2 pyramids and sulfur chains. In the S-rich domain, the existence of quasi-tetrahedral (QT) S = As(S1/2)3 units is deduced from XPS data, but with a concentration not exceeding ∼3–5% of total atomic sites. Therefore, QT units do not appear as primary building blocks of the glass backbone in these materials, and an optimally-constrained network may not be an appropriate description for glasses when x < 40. It is shown that, in contrast to Se-based glasses, the ‘chain-crossing’ model is only partially applicable to sulfide glasses.


Journal of Applied Physics | 2002

Thermal return reflection method for resolving emissivity and temperature in radiometric measurements

Paul P. Woskov; S. K. Sundaram

A radiometric method for resolving emissivity e and temperature T in thermal emission measurements is presented. Thermal radiation from a viewed source is split by a beamsplitter between a radiometer and a mirror aligned to return a part of the thermal radiation back to the source. The ratio of the thermal signal with and without a return reflection provides a measurement of the emissivity without need of any other probing sources. The analytical expressions that establish this relationship are derived taking into account waveguide/optic losses and sources between the radiometer and viewed sample. The method is then applied to thermal measurements of several refractory materials at temperatures up to 1150 °C. A 137 GHz radiometer is used to measure the emissivity and temperature of an alumina brick, an Inconel 690 plate, and two grades of silicon carbide. Reasonable temperature agreement is achieved with an independent thermocouple measurement. However, when the emissivity approaches zero, as in the case ...


Archive | 2009

Pretreatment Engineering Platform Phase 1 Final Test Report

Dean E. Kurath; Brady D. Hanson; Michael J. Minette; David L. Baldwin; Brian M. Rapko; Lenna A. Mahoney; Philip P. Schonewill; Richard C. Daniel; Paul W. Eslinger; James L. Huckaby; Justin M. Billing; Parameshwaran S. Sundar; Gary B. Josephson; James J. Toth; Satoru T. Yokuda; Ellen Bk Baer; Steven M. Barnes; Elizabeth C. Golovich; Scot D. Rassat; Christopher F. Brown; John Gh Geeting; Gary J. Sevigny; Amanda J. Casella; Jagannadha R. Bontha; Rosanne L. Aaberg; Pamela M. Aker; Consuelo E. Guzman-Leong; Marcia L. Kimura; S. K. Sundaram; Richard P. Pires

Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to conduct testing to demonstrate the performance of the WTP Pretreatment Facility (PTF) leaching and ultrafiltration processes at an engineering-scale. In addition to the demonstration, the testing was to address specific technical issues identified in Issue Response Plan for Implementation of External Flowsheet Review Team (EFRT) Recommendations - M12, Undemonstrated Leaching Processes.( ) Testing was conducted in a 1/4.5-scale mock-up of the PTF ultrafiltration system, the Pretreatment Engineering Platform (PEP). Parallel laboratory testing was conducted in various PNNL laboratories to allow direct comparison of process performance at an engineering-scale and a laboratory-scale. This report presents and discusses the results of those tests.


Quantum Sensing and Nanophotonic Devices | 2004

Chalcogenide glasses and structures for quantum sensing

S. K. Sundaram; Bradley R. Johnson; Michael J. Schweiger; J. E. Martinez; Brian J. Riley; Laxmikant V. Saraf; Norman C. Anheier; Paul J. Allen; John F. Schultz

Chalcogenide glasses are formed by combining chalcogen elements with IV-V elements. Among the family of glasses, As2S3, and As2Se3 are important infrared (IR) transparent materials for a variety of applications such as IR sensors, waveguides, and photonic crystals. With the promise of accessibility to any wavelengths between 3.5 and 16 μm using tunable quantum cascade lasers (QCL) and chalcogenides with IR properties that can be compositionally adjusted, ultra-sensitive, solid-state, photonic-based chemical sensing in mid-wave IR region is now possible. Pacific Northwest National Laboratory (PNNL) has been developing quantum cascade lasers (QCLs), chalcogenides, and all other components for an integrated approach to chemical sensing. Significant progress has been made in glass formation and fabrication of different structures at PNNL. Three different glass-forming systems, As-S, As-S-Se, and As-S-Ag have been examined for this application. Purification of constituents from contaminants and thermal history are two major issues in obtaining defect-free glasses. We have shown how the optical properties can be systematically modified by changing the chemistry in As-S-Se system. Different fabrication techniques need to be employed for different geometries and structures. We have successfully fabricated periodic arrays and straight waveguides using laser-writing and characterized the structures. Wet-chemical lithography has been extended to chalcogenides and challenges identified. We have also demonstrated holographic recording or diffraction gratings in chalcogenides.


Archive | 2011

Secondary Waste Form Development and Optimization—Cast Stone

S. K. Sundaram; Kent E. Parker; Michelle M. Valenta; Stan G. Pitman; Jaehun Chun; Chul-Woo Chung; Marcia L. Kimura; Carolyn A. Burns; Wooyong Um; Joseph H. Westsik

Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.


Materials Science Forum | 2008

Slag-Refractory Interaction in Slagging Coal Gasifiers

Josef Matyas; S. K. Sundaram; Brent J. Hicks; Autumn B. Edmondson; Benjamin M. Arrigoni

The combustion chamber of slagging coal gasifiers is lined with refractories to protect the steel shell of the gasifier from elevated temperatures and corrosive attack of the coal slag. Refractories composed primarily of Cr2O3 have been found most resistant to slag corrosion, but they continue to fail performance requirements. Post-mortem analysis of high-chromia refractory bricks collected from commercial gasifiers suggests that slag penetration and subsequent spalling of refractory are the cause of the short service life of gasifier refractories [1]. Laboratory tests were conducted to determine the penetration depth of three slags representative of a wide variety of coals in the United States into chromia-alumina and two high-chromia refractories. Variables tested were refractory-slag combinations and two partial pressures of O2. Slag penetration depths were measured from spliced images of each refractory. Samples heated to 1470°C for 2 hrs had maximum penetration depths ranging from 1.99±0.15 mm to at least 21.6 mm. Aurex 95P, a highchromia refractory containing 3.3% phosphorous pentoxide (P2O5), showed the least slag penetration of all refractories tested. P2O5 likely reacts with CaO and MgO in the slag, forming an immiscible Ca-Mg phosphate phase. The extraction of basic components from slag causes an increase in slag viscosity restricting the molten slag penetration into the refractory.


Applied Physics Letters | 2009

Morphology, orientation relationship, and stability analysis of Cu2O nanoclusters on SrTiO3 (100)

Satyanarayana V N T Kuchibhatla; Shenyang Y. Hu; Zhongqing Yu; V. Shutthanandan; Ye Li; Ponnusamy Nachimuthu; Weilin Jiang; Suntharampillai Thevuthasan; Charles H. Henager; S. K. Sundaram

Reflection high energy electron diffraction, atomic force microscopy, and theoretical studies based on classical nucleation theory have been used to interpret the morphology, orientation relationship, and stability of Cu2O nanoclusters on SrTiO3 (100) (STO). We propose that the competing interfacial and elastic energies facilitate an in-plane rotation of the Cu2O clusters by 45° with respect to the STO substrate and stabilize Cu2O clusters on STO(100) with an orientation relationship of (001)Cu2O//(001)SrTiO3 and ⟨100⟩Cu2O//⟨110⟩SrTiO3. Our preliminary theoretical analysis also suggests that this particular orientation results in smaller critical nucleus sizes and lower nucleation barriers and also indicates a chemical potential (growth rate) dependence of the orientation relationship.


Other Information: PBD: 1 Jun 2002 | 2002

Millimeter-Wave Monitoring of Nuclear Waste Glass Melts – An Overview

Paul P. Woskov; J. S. Machuzak; P. Thomas; S. K. Sundaram; William E. Daniel

Molten glass characteristics of temperature, resistivity, and viscosity can be monitored reliably in the high temperature and chemically corrosive environment of nuclear waste glass melters using millimeter-wave sensor technology. Millimeter-waves are ideally suited for such measurements because they are long enough to penetrate optically unclear atmospheres, but short enough for spatially resolved measurements. Also efficient waveguide and optic components can be fabricated from refractory materials such as ceramics. Extensive testing has been carried out at a frequency of 137 GHz to temperatures up to 1500 C. Performance of refractory waveguides at high temperature has been shown to be satisfactory. A novel new method for viscosity monitoring has also been tested with simulated nuclear waste glasses. It has been shown that a viscosity range of over 30 to 3000 Poise can be monitored with one instrument. Results of these laboratory tests and the potential of millimeter-wave sensors for on-line glass process monitoring are presented.

Collaboration


Dive into the S. K. Sundaram's collaboration.

Top Co-Authors

Avatar

Brian J. Riley

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Paul P. Woskov

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bradley R. Johnson

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jarrod V. Crum

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John S. McCloy

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josef Matyas

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jake Amoroso

Savannah River National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge