Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Kado is active.

Publication


Featured researches published by S. Kado.


Physics of Plasmas | 1999

Initial physics achievements of large helical device experiments

O. Motojima; H. Yamada; A. Komori; N. Ohyabu; K. Kawahata; O. Kaneko; S. Masuzaki; A. Ejiri; M. Emoto; H. Funaba; M. Goto; K. Ida; H. Idei; S. Inagaki; N. Inoue; S. Kado; S. Kubo; R. Kumazawa; T. Minami; J. Miyazawa; T. Morisaki; S. Morita; S. Murakami; S. Muto; T. Mutoh; Y. Nagayama; Y. Nakamura; H. Nakanishi; K. Narihara; K. Nishimura

The Large Helical Device (LHD) experiments [O. Motojima, et al., Proceedings, 16th Conference on Fusion Energy, Montreal, 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 3, p. 437] have started this year after a successful eight-year construction and test period of the fully superconducting facility. LHD investigates a variety of physics issues on large scale heliotron plasmas (R=3.9 m, a=0.6 m), which stimulates efforts to explore currentless and disruption-free steady plasmas under an optimized configuration. A magnetic field mapping has demonstrated the nested and healthy structure of magnetic surfaces, which indicates the successful completion of the physical design and the effectiveness of engineering quality control during the fabrication. Heating by 3 MW of neutral beam injection (NBI) has produced plasmas with a fusion triple product of 8×1018 keV m−3 s at a magnetic field of 1.5 T. An electron temperature of 1.5 keV and an ion temperature of 1.4 keV have been achieved. The maximum s...


Physics of Plasmas | 2000

Experimental study of the bifurcation nature of the electrostatic potential of a toroidal helical plasma

A. Fujisawa; H. Iguchi; T. Minami; Y. Yoshimura; Kenji Tanaka; K. Itoh; H. Sanuki; S. Lee; M. Kojima; S.-I. Itoh; M. Yokoyama; S. Kado; S. Okamura; R. Akiyama; K. Ida; M. Isobe; S. Nishimura; M. Osakabe; I. Nomura; A. Shimizu; C. Takahashi; K. Toi; K. Matsuoka; Y. Hamada; M. Fujiwara

The bifurcation nature of the electrostatic structure is studied in the toroidal helical plasma of the Compact Helical System (CHS) [K. Matsuoka et al., Proceedings of the 12th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Nice, 1988 (International Atomic Energy Agency, Vienna, 1989), Vol. 2, p. 411]. Observation of bifurcation-related phenomena is introduced, such as characteristic patterns of discrete potential profiles, and various patterns of self-sustained oscillations termed electric pulsation. Some patterns of the electrostatic structure are found to be quite important for fusion application owing to their association with transport barrier formation. It is confirmed, as is shown in several tokamak experiments, that the thermal transport barrier is linked with electrostatic structure through the radial electric field shear that can reduce the fluctuation resulting in anomalous transport. This article describes in detail spatio-temporal evolution during self-sust...


Review of Scientific Instruments | 2000

Measurements of poloidal rotation velocity using charge exchange spectroscopy in a large helical device

K. Ida; S. Kado; Y. Liang

Absolute measurements of poloidal rotation velocity with the accuracy up to 1 km/s (2 pm in wavelength) were done using charge exchange spectroscopy in a large helical device. Radial profiles of the absolute Doppler shift of charge exchange emission with a beam are obtained from spectra measured with four sets of optical fiber arrays that view downward and upward at the poloidal cross section with and without neutral beam injection. By arranging the optical fiber from four arrays close to each other at the entrance slit, the apparent Doppler shift due to aberrations of the spectrometer and due to interference of the cold component (the charge exchange between He-like oxygen and thermal neutrals 8 pm from the charge exchange emission with a beam) can be eliminated from the measurements. The measured poloidal rotation velocity is 1–3 km/s in the electron diamagnetic direction at half of the plasma minor radius.


Nuclear Fusion | 2001

Energy confinement and thermal transport characteristics of net current free plasmas in the Large Helical Device

H. Yamada; K.Y. Watanabe; K. Yamazaki; S. Murakami; S. Sakakibara; K. Narihara; Kenji Tanaka; M. Osakabe; K. Ida; N. Ashikawa; P. de Vries; M. Emoto; H. Funaba; M. Goto; H. Idei; K. Ikeda; S. Inagaki; N. Inoue; M. Isobe; S. Kado; O. Kaneko; K. Kawahata; K. Khlopenkov; T. Kobuchi; A. Komori; S. Kubo; R. Kumazawa; Y. Liang; S. Masuzaki; T. Minami

The energy confinement and thermal transport characteristics of net current free plasmas in regimes with much smaller gyroradii and collisionality than previously studied have been investigated in the Large Helical Device (LHD). The inward shifted configuration, which is superior from the point of view of neoclassical transport theory, has revealed a systematic confinement improvement over the standard configuration. Energy confinement times are improved over the International Stellarator Scaling 95 by a factor of 1.6 ± 0.2 for an inward shifted configuration. This enhancement is primarily due to the broad temperature profile with a high edge value. A simple dimensional analysis involving LHD and other medium sized heliotrons yields a strongly gyro-Bohm dependence (T E Ω ρ *-3.8 ) of energy confinement times. It should be noted that this result is attributed to a comprehensive treatment of LHD for systematic confinement enhancement and that the medium sized heliotrons have narrow temperature profiles. The core stored energy still indicates a dependence of T E Ω ρ *-2.6 when data only from LIED are processed. The local heat transport analysis of discharges dimensionally similar except for ρ * suggests that the heat conduction coefficient lies between Bohm and gyro-Bohm in the core and changes towards strong gyro-Bohm in the peripheral region. Since the inward shifted configuration has a geometrical feature suppressing neoclassical transport, confinement improvement can be maintained in the collisionless regime where ripple transport is important. The stiffness of the pressure profile coincides with enhanced transport in the peaked density profile obtained by pellet injection.


Nuclear Fusion | 2001

MHD characteristics in the high beta regime of the Large Helical Device

S. Sakakibara; H. Yamada; K.Y. Watanabe; Y. Narushima; K. Toi; S. Ohdachi; M. Takechi; Satoshi Yamamoto; K. Narihara; Kenji Tanaka; N. Ashikawa; P. de Vries; M. Emoto; H. Funaba; M. Goto; K. Ida; H. Idei; K. Ikeda; S. Inagaki; N. Inoue; M. Isobe; S. Kado; O. Kaneko; K. Kawahata; K. Khlopenkov; T. Kobuchi; A. Komori; S. Kubo; R. Kumazawa; Y. Liang

Note: Proc. 18th IAEA Fusion Energy Conference, Sorrento, Italy, 4-10 October 2000, IAEA-CN-77 (EXP3/12), p. 157 (2000) Reference CRPP-CONF-2000-073 Record created on 2008-05-13, modified on 2017-05-12


Nuclear Fusion | 1999

Confinement physics study in a small low aspect ratio helical device: CHS

S. Okamura; K. Matsuoka; R. Akiyama; D. S. Darrow; A. Ejiri; A. Fujisawa; M. Fujiwara; M. Goto; K. Ida; H. Idei; H. Iguchi; N. Inoue; M. Isobe; K. Itoh; S. Kado; K. Khlopenkov; T. Kondo; S. Kubo; A. Lazaros; S. Lee; G. Matsunaga; T. Minami; S. Morita; S. Murakami; Noriyoshi Nakajima; N. Nikai; S. Nishimura; I. Nomura; S. Ohdachi; K. Ohkuni

Variation of the plasma position relative to the centre of the helical coil winding is a very effective means of controlling the MHD stability and the trapped particle confinement in heliotron/torsatron systems, but improving one of these two characteristics with this parameter simultaneously has a detrimental effect on the other. The inward shifted configuration is favourable for drift orbit optimization but is predicted to be unstable according to the Mercier criterion. Various physics problems, such as electric field structure, plasma rotation and MHD phenomena, have been studied in the Compact Helical System (CHS) with a compromise intermediate position. With this standard configuration, CHS has yielded experimental results that contribute to the understanding of general toroidal confinement physics and low aspect ratio helical systems. In the recent experiments, it was found that a wide range of inward shifted configurations give stable plasma discharges without any restriction to the special pressure profile. Such an enhanced range of operation made it possible to study experimentally the drift orbit optimized configuration in heliotron/torsatron systems. The effect of configuration improvement was studied with plasmas in a low collisionality regime.


Nuclear Fusion | 2001

Impact of pellet injection on extension of the operational region in LHD

R. Sakamoto; H. Yamada; Kenji Tanaka; K. Narihara; S. Morita; S. Sakakibara; S. Masuzaki; S. Inagaki; L. R. Baylor; P.W. Fisher; S.K. Combs; M.J. Gouge; S. Kato; A. Komori; O. Kaneko; N. Ashikawa; P. de Vries; M. Emoto; H. Funaba; M. Goto; K. Ida; H. Idei; K. Ikeda; M. Isobe; S. Kado; K. Kawahata; K. Khlopenkov; S. Kubo; R. Kumazawa; T. Minami

Pellet injection has been used as a primary fuelling scheme in the Large Helical Device. With pellet injection, the operational region of NBI plasmas has been extended to higher densities while maintaining a favourable dependence of energy confinement on density, and several important values, such as plasma stored energy of 0.88?MJ, energy confinement time of 0.3?s, ? of 2.4% at 1.3?T and density of 1.1 ? 1020?m -3, have been achieved. These parameters cannot be attained by gas puffing. Ablation and the subsequent behaviour of the plasma have been investigated. The measured pellet penetration depth estimated on the basis of the duration of the H? emission is shallower than the depth predicted from the simple neutral gas shielding (NGS) model. It can be explained by the NGS model with inclusion of the effect of fast ions on the ablation. Just after ablation, the redistribution of the ablated pellet mass was observed on a short timescale (~400?ms). The redistribution causes shallow deposition and low fuelling efficiency.


Nuclear Fusion | 2001

Ion and electron heating in ICRF heating experiments on LHD

K. Saito; R. Kumazawa; T. Mutoh; T. Seki; T. Watari; Y. Torii; D. Hartmann; Yanping Zhao; A. Fukuyama; F. Shimpo; Goro Nomura; M. Yokota; M. Sasao; M. Isobe; M. Osakabe; T. Ozaki; K. Narihara; Y. Nagayama; S. Inagaki; K. Itoh; S. Morita; A. V. Krasilnikov; K. Ohkubo; M. Sato; S. Kubo; T. Shimozuma; H. Idei; Y. Yoshimura; O. Kaneko; Y. Takeiri

The ICRF heating experiments conducted in 1999 in the third experimental campaign on LHD are reported, with an emphasis on the optimization of the heating regime. Specifically, an exhaustive study of seven different heating regimes was carried out by changing the radiofrequency relative to the magnetic field intensity, and the dependence of the heating efficiency on H minority concentration was investigated. It was found in the experiment that both ion and electron heating are attainable with the same experimental set-up by properly choosing the frequency relative to the magnetic field intensity. In the cases of both electron heating and ion heating, the power absorption efficiency depends on the minority ion concentration. An optimum minority concentration exists in the ion heating case while, in the electron heating case, the efficiency increases with concentration monotonically. A simple model calculation is introduced to provide a heuristic understanding of these experimental results. Among the heating regimes examined in this experiment, one of the ion heating regimes was finally chosen as the optimized heating regime and various high performance discharges were realized with it.


Nuclear Fusion | 1999

Plasma confinement studies in LHD

M. Fujiwara; H. Yamada; A. Ejiri; M. Emoto; H. Funaba; M. Goto; K. Ida; H. Idei; S. Inagaki; S. Kado; O. Kaneko; K. Kawahata; T. Kobuchi; A. Komori; S. Kubo; R. Kumazawa; S. Masuzaki; T. Minami; J. Miyazawa; T. Morisaki; S. Morita; S. Murakami; S. Muto; T. Mutoh; Y. Nagayama; Y. Nakamura; H. Nakanishi; K. Narihara; K. Nishimura; N. Noda

The initial experiments on the Large Helical Device (LHD) have extended confinement studies on currentless plasmas to a large scale (R = 3.9 m, a = 0.6 m). Heating by NBI of 3 MW produced plasmas with a fusion triple product of 8 × 1018m-3keVs at a magnetic field strength of 1.5 T. An electron temperature of 1.5 keV and an ion temperature of 1.1 keV were achieved simultaneously at a line averaged electron density of 1.5 × 1019 m-3. The maximum stored energy reached 0.22 MJ with neither unexpected confinement deterioration nor visible MHD instabilities, which corresponds to β = 0.7%. Energy confinement times reached a maximum of 0.17 s. A favourable dependence of energy confinement time on density remains in the present power density (~40 kW/m3) and electron density (3 × 1019 m-3) regimes, unlike the L mode in tokamaks. Although power degradation and significant density dependence are similar to the conditions on existing medium sized helical devices, the absolute value is enhanced by up to about 50% from the International Stellarator Scaling 95. Temperatures of both electrons and ions as high as 200 eV were observed at the outermost flux surface, which indicates a qualitative jump in performance compared with that of helical devices to date. Spontaneously generated toroidal currents indicate agreement with the physical picture of neoclassical bootstrap currents. Change of magnetic configuration due to the finite β effect was well described by 3-D MHD equilibrium analysis. A density pump-out phenomenon was observed in hydrogen discharges, which was mitigated in helium discharges with high recycling.


Fusion Engineering and Design | 2001

Electron cyclotron heating scenario and experimental results in LHD

H. Idei; S. Kubo; T. Shimozuma; M. Sato; K. Ohkubo; Y. Yoshimura; Y. Takita; S. Kobayashi; S. Ito; Y. Mizuno; K. Tsumori; K. Ikeda; T. Notake; T. Watari; O. Kaneko; A. Komori; H. Yamada; P. de Vries; M. Goto; K. Ida; S. Inagaki; S. Kado; K. Kawahata; T. Kobuchi; T. Minami; J. Miyazawa; T. Morisaki; S. Morita; S. Murakami; S. Muto

A large helical device (LHD) experiment began at the end of March 1998. Fundamental and second harmonic electron cyclotron heating (ECH) are used as a plasma production and heating method with six gyrotrons whose frequencies are 82.6/84 and 168 GHz, respectively. Up to 0.9 MW power has been injected in LHD with long distance corrugated waveguide transmission systems. The maximum pulse width is achieved to 3.0 s/240 kW for the LHD experiments. Six antenna systems have been prepared at the horizontally and vertically elongated poloidal sections. The maximum stored energy using all six gyrotrons is 70 kJ at the averaged density of n e = 4 × 10 18 m -3 . The maximum central electron temperature T e0 = 3.5 keV is achieved at n e = 3 × 10 18 m -3 . The magnetic field structure in heliotron type devices like LHD, notably near the coil, is complicated. For this oblique injection, a wave is launched from the antenna, and then crosses the plasma in the complex field structure near the coil. The polarization ellipse of the wave is changed along the ray-path. The wave propagation in heliotron type devices has been analyzed in an ideal case that the magnetic field component along the propagation direction can be neglected. Even for perpendicular injection with our antenna systems, the field component along the propagation direction is not so small. Another treatment of the wave-propagation is introduced. Some calculations for the heating scenario with this treatment are shown.

Collaboration


Dive into the S. Kado's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge