Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Matthew Menke is active.

Publication


Featured researches published by S. Matthew Menke.


Energy and Environmental Science | 2014

Exciton diffusion in organic photovoltaic cells

S. Matthew Menke; Russell J. Holmes

Exciton generation, migration, and dissociation are key processes that play a central role in the design and operation of many organic optoelectronic devices. In organic photovoltaic cells, charge generation often occurs only at an interface, forcing the exciton to migrate from the point of photogeneration in order to be dissociated into its constituent charge carriers. Consequently, the design and performance of these devices is strongly impacted by the typically short distance over which excitons are able to move. The ability to engineer materials or device architectures with favorable exciton transport depends strongly on improving our understanding of the governing energy transfer mechanisms and rates. To this end, this review highlights recent efforts to better characterize, understand and ultimately engineer exciton transport.


Nature Materials | 2013

Tailored exciton diffusion in organic photovoltaic cells for enhanced power conversion efficiency

S. Matthew Menke; Wade A. Luhman; Russell J. Holmes

Photoconversion in planar-heterojunction organic photovoltaic cells (OPVs) is limited by a short exciton diffusion length (L(D)) that restricts migration to the dissociating electron donor/acceptor interface. Consequently, bulk heterojunctions are often used to realize high efficiency as these structures reduce the distance an exciton must travel to be dissociated. Here, we present an alternative approach that seeks to directly engineer L(D) by optimizing the intermolecular separation and consequently, the photophysical parameters responsible for excitonic energy transfer. By diluting the electron donor boron subphthalocyanine chloride into a wide-energy-gap host material, we optimize the degree of interaction between donor molecules and observe a ~50% increase in L(D). Using this approach, we construct planar-heterojunction OPVs with a power conversion efficiency of (4.4 ± 0.3)%, > 30% larger than the case of optimized devices containing an undiluted donor layer. The underlying correlation between L(D) and the degree of molecular interaction has wide implications for the design of both OPV active materials and device architectures.


ACS Nano | 2016

Limits for Recombination in a Low Energy Loss Organic Heterojunction

S. Matthew Menke; Aditya Sadhanala; Mark Nikolka; Niva A. Ran; Mahesh Kumar Ravva; Safwat Abdel-Azeim; Hannah L. Stern; Ming Wang; Henning Sirringhaus; Thuc-Quyen Nguyen; Jean-Luc Brédas; Guillermo C. Bazan; Richard H. Friend

Donor-acceptor organic solar cells often show high quantum yields for charge collection, but relatively low open-circuit voltages (VOC) limit power conversion efficiencies to around 12%. We report here the behavior of a system, PIPCP:PC61BM, that exhibits very low electronic disorder (Urbach energy less than 27 meV), very high carrier mobilities in the blend (field-effect mobility for holes >10-2 cm2 V-1 s-1), and a very low driving energy for initial charge separation (50 meV). These characteristics should give excellent performance, and indeed, the VOC is high relative to the donor energy gap. However, we find the overall performance is limited by recombination, with formation of lower-lying triplet excitons on the donor accounting for 90% of the recombination. We find this is a bimolecular process that happens on time scales as short as 100 ps. Thus, although the absence of disorder and the associated high carrier mobility speeds up charge diffusion and extraction at the electrodes, which we measure as early as 1 ns, this also speeds up the recombination channel, giving overall a modest quantum yield of around 60%. We discuss strategies to remove the triplet exciton recombination channel.


Applied Physics Letters | 2012

Tandem organic photodetectors with tunable, broadband response

S. Matthew Menke; Richa Pandey; Russell J. Holmes

Broadband photodetection is achieved by integrating three electron donor materials with complementary absorption into an organic photodetector (OPD). While a single donor-acceptor heterojunction can show broadband response, the spectral tunability is intrinsically limited to the absorption profiles of the active materials. Here, we demonstrate broadband OPDs consisting of multiple bulk heterojunctions arranged in tandem. These OPDs show high responsivity under moderate reverse bias from the ultraviolet to the near-infrared. By combining materials with complementary absorption in a tandem OPD, we demonstrate that the response from each band can be separately tuned with manipulation of the heterojunction thicknesses or composition.


ACS Applied Materials & Interfaces | 2015

Energy-Cascade Organic Photovoltaic Devices Incorporating a Host–Guest Architecture

S. Matthew Menke; Russell J. Holmes

In planar heterojunction organic photovoltaic devices (OPVs), broad spectral coverage can be realized by incorporating multiple molecular absorbers in an energy-cascade architecture. Here, this approach is combined with a host-guest donor layer architecture previously shown to optimize exciton transport for the fluorescent organic semiconductor boron subphthalocyanine chloride (SubPc) when diluted in an optically transparent host. In order to maximize the absorption efficiency, energy-cascade OPVs that utilize both photoactive host and guest donor materials are examined using the pairing of SubPc and boron subnaphthalocyanine chloride (SubNc), respectively. In a planar heterojunction architecture, excitons generated on the SubPc host rapidly energy transfer to the SubNc guest, where they may migrate toward the dissociating, donor-acceptor interface. Overall, the incorporation of a photoactive host leads to a 13% enhancement in the short-circuit current density and a 20% enhancement in the power conversion efficiency relative to an optimized host-guest OPV combining SubNc with a nonabsorbing host. This work underscores the potential for further design refinements in planar heterojunction OPVs and demonstrates progress toward the effective separation of functionality between constituent OPV materials.


ACS Nano | 2015

Directing Energy Transport in Organic Photovoltaic Cells Using Interfacial Exciton Gates

S. Matthew Menke; Tyler K. Mullenbach; Russell J. Holmes

Exciton transport in organic semiconductors is a critical, mediating process in many optoelectronic devices. Often, the diffusive and subdiffusive nature of excitons in these systems can limit device performance, motivating the development of strategies to direct exciton transport. In this work, directed exciton transport is achieved with the incorporation of exciton permeable interfaces. These interfaces introduce a symmetry-breaking imbalance in exciton energy transfer, leading to directed motion. Despite their obvious utility for enhanced exciton harvesting in organic photovoltaic cells (OPVs), the emergent properties of these interfaces are as yet uncharacterized. Here, directed exciton transport is conclusively demonstrated in both dilute donor and energy-cascade OPVs where judicious optimization of the interface allows exciton transport to the donor-acceptor heterojunction to occur considerably faster than when relying on simple diffusion. Generalized systems incorporating multiple exciton permeable interfaces are also explored, demonstrating the ability to further harness this phenomenon and expeditiously direct exciton motion, overcoming the diffusive limit.


Journal of Physical Chemistry C | 2017

Photon Reabsorption in Mixed CsPbCl3:CsPbI3 Perovskite Nanocrystal Films for Light-Emitting Diodes

Nathaniel J. L. K. Davis; Francisco de la Peña; Maxim Tabachnyk; Johannes M. Richter; Robin Lamboll; Edward P. Booker; Florencia Wisnivesky Rocca Rivarola; James T. Griffiths; Caterina Ducati; S. Matthew Menke; Felix Deschler; Neil C. Greenham

Cesium lead halide nanocrystals, CsPbX3 (X = Cl, Br, I), exhibit photoluminescence quantum efficiencies approaching 100% without the core–shell structures usually used in conventional semiconductor nanocrystals. These high photoluminescence efficiencies make these crystals ideal candidates for light-emitting diodes (LEDs). However, because of the large surface area to volume ratio, halogen exchange between perovskite nanocrystals of different compositions occurs rapidly, which is one of the limiting factors for white-light applications requiring a mixture of different crystal compositions to achieve a broad emission spectrum. Here, we use mixtures of chloride and iodide CsPbX3 (X = Cl, I) perovskite nanocrystals where anion exchange is significantly reduced. We investigate samples containing mixtures of perovskite nanocrystals with different compositions and study the resulting optical and electrical interactions. We report excitation transfer from CsPbCl3 to CsPbI3 in solution and within a poly(methyl methacrylate) matrix via photon reabsorption, which also occurs in electrically excited crystals in bulk heterojunction LEDs.


Applied Physics Letters | 2014

Optical spacing effect in organic photovoltaic cells incorporating a dilute acceptor layer

S. Matthew Menke; Christopher D. Lindsay; Russell J. Holmes

The addition of spacing layers in organic photovoltaic cells (OPVs) can enhance light absorption by optimizing the spatial distribution of the incident optical field in the multilayer structure. We explore the optical spacing effect in OPVs achieved using a diluted electron acceptor layer of C60. While optical spacing is often realized by optimizing buffer layer thickness, we find that optical spacing via dilution leads to cells with similar or enhanced photocurrent. This is observed despite a smaller quantity of absorbing molecules, suggesting a more efficient use of absorbed photons. In fact, dilution is found to concentrate optical absorption near the electron donor-acceptor interface, resulting in a marked increase in the exciton diffusion efficiency. Contrasting the use of changes in thickness to engineer optical absorption, the use of dilution does not significantly alter the overall thickness of the OPV. Optical spacing via dilution is shown to be a viable alternative to more traditional optical sp...


Journal of Materials Chemistry | 2017

On the energetics of bound charge-transfer states in organic photovoltaics

Jiangbin Zhang; Andreas C. Jakowetz; Guangru Li; Dawei Di; S. Matthew Menke; Akshay Rao; Richard H. Friend; Artem A. Bakulin

A comprehensive understanding of the charge generation mechanism in organic solar cells is critical for further improvement of device performance. Currently, the origin and magnitude of the coulombic binding energy of the charge-transfer state (CTS), an intermediate state which is fundamental for the charge separation process, are still under debate. Here, we propose a new approach for determining the dissociation energy of localised CTSs for a range of devices with different alignments of molecular energy levels (tuned by chemical modifications of fullerene) and disorder (adjusted by the blend composition) using temperature-dependent pump-push photocurrent spectroscopy. We observe that the dissociation of localised CTSs from initial excitation is a temperature-dependent process, and we determined the binding energy of these CTSs by measuring a single activation energy over a wide temperature range. We propose a simple qualitative picture to explain the observation, based on the split between the bound CTSs and free charges. In all the material systems studied here, the activation energy falls within the range of 90 ± 50 meV (corresponding to ∼1 nm separation of an electron–hole pair). Surprisingly, the binding energy does not depend on the material composition or the driving energy (∼150 meV variation) for charge separation. In contrast, the number of formed bound states and their following recombination dynamics are material- and nanomorphology-sensitive. Such observations in the studied benchmark polymer:fullerene systems reveal unexpected similarities in the energetics of CTSs formed in different electronic environments. This makes our results of general importance for understanding the photophysics at the heterojunction interface and for further development of organic photovoltaics.


Journal of Materials Chemistry C | 2016

Evaluating the role of energetic disorder and thermal activation in exciton transport

S. Matthew Menke; Russell J. Holmes

Temperature dependent measurements of the exciton diffusion length (LD) are performed for three archetypical small-molecule, organic semiconductors: aluminum tris-(8-hydroxyquinoline) (Alq3), dicyanovinyl-terthiophene (DCV3T), and boron subphthalocyanine chloride (SubPc). The experimental results are well-reproduced with stochastic simulations for LD by accounting for the presence of energetic disorder and thermal activation within both the inhomogeneously broadened density of states and the rate of intermolecular Forster energy transfer, respectively. In turn, activated and non-activated transport regimes can be distinguished, and exciton energy transfer within these materials can be deconvoluted from energetic disorder—providing insight regarding the fundamental parameters limiting LD.

Collaboration


Dive into the S. Matthew Menke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akshay Rao

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge