Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Shiraiwa is active.

Publication


Featured researches published by S. Shiraiwa.


Physics of Plasmas | 2010

Absorption of lower hybrid waves in the scrape off layer of a diverted tokamak

G.M. Wallace; R.R. Parker; P.T. Bonoli; A. Hubbard; J.W. Hughes; B. LaBombard; O. Meneghini; A.E. Schmidt; S. Shiraiwa; D.G. Whyte; John Wright; S.J. Wukitch; R. W. Harvey; A. P. Smirnov; J. R. Wilson

The goal of the Lower Hybrid Current Drive (LHCD) system on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] is to investigate current profile control under plasma conditions relevant to future tokamak experiments. Experimental observations of a LHCD “density limit” for C-Mod are presented in this paper. Bremsstrahlung emission from relativistic fast electrons in the core plasma drops suddenly above line averaged densities of 1020 m−3 (ω/ωLH∼3–4), well below the density limit previously observed on other experiments (ω/ωLH∼2). Electric currents flowing through the scrape off layer (SOL) between the inner and outer divertors increase dramatically across the same density range that the core bremsstrahlung emission drops precipitously. These experimental x-ray data are compared to both conventional modeling, which gives poor agreement with experiment above the density limit and a model including collisional absorption in the SOL, which dramatically improves agreement with experimen...


Nuclear Fusion | 2011

Lower hybrid current drive at high density in Alcator C-Mod

G.M. Wallace; A. Hubbard; P.T. Bonoli; I. Faust; R. W. Harvey; J.W. Hughes; B. LaBombard; O. Meneghini; R.R. Parker; Andrea Schmidt; S. Shiraiwa; A. P. Smirnov; D.G. Whyte; J. R. Wilson; John Wright; S.J. Wukitch

Experimental observations of lower hybrid current drive (LHCD) at high density on the Alcator C-Mod tokamak are presented in this paper. Bremsstrahlung emission from relativistic fast electrons in the core plasma drops suddenly above line-averaged densities of 1020 m−3 (ω/ωLH ~ 3) in single null discharges with large (≥8 mm) inner gaps, well below the density limit previously observed on limited tokamaks (ω/ωLH ~ 2). Modelling and experimental evidence suggest that the absence of LHCD driven fast electrons at high density may be due to parasitic collisional absorption in the scrape-off layer (SOL). Experiments show that the population of fast electrons produced by LHCD at high density ( 10^{20}\,{\rm m}^{-3} SRC=http://ej.iop.org/images/0029-5515/51/8/083032/nf381190in001.gif/>) can be increased by operating with an inner gap of less than ~5 mm with the strongest non-thermal emission in inner wall limited plasmas. A change in plasma topology from single to double null produces a modest increase in non-thermal emission at high density. Increasing the electron temperature in the periphery of the plasma (0.8 > r/a > 1.0) also results in a modest increase in non-thermal electron emission above the density limit. Ray tracing/Fokker–Planck simulations of these discharges predict the observed sensitivity to plasma position when the effects of collisional absorption in the SOL are included in the model.


Plasma Physics and Controlled Fusion | 2013

Measurements of ion cyclotron parametric decay of lower hybrid waves at the high-field side of Alcator C-Mod

S. G. Baek; R.R. Parker; S. Shiraiwa; G. Wallace; P.T. Bonoli; D. Brunner; I C Faust; A. Hubbard; B. LaBombard; M. Porkolab

Ion cyclotron parametric decay instability (PDI) of lower hybrid (LH) waves is surveyed using edge Langmuir probes on the Alcator C-Mod tokamak. The measurement is carried out simultaneously at the high-field side (HFS) and low-field side (LFS) mid-plane of the tokamak, as well as in the outer divertor region. Different LH spectra are observed depending on the location of the probes and magnetic configuration in L-mode plasmas, with drift direction downward. In lower single null (LSN) plasmas, strong ion cyclotron PDI occurring at the HFS is observed for the first time. This instability is characterized by a frequency separation in sidebands corresponding to the ion cyclotron frequency (ωci) near the HFS scrape-off layer and develops with threshold-like behavior as density increases. In inner wall limited (IWL) plasmas, this HFS instability shows a higher density threshold compared with that in LSN plasmas. The pump width becomes broadened even in the absence of the sidebands. In upper single null plasmas with similar plasma parameters, ion cyclotron PDI sidebands have a frequency separation corresponding to ωci near the LFS and are weaker than those observed in the LSN and IWL plasmas. Correlation between the onset of ion cyclotron PDI and the observed loss of lower hybrid current drive efficiency (Wallace et al 2012 Phys. Plasmas 19 062505) is discussed.


Nuclear Fusion | 2009

Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas

J. E. Rice; A. Ince-Cushman; P.T. Bonoli; M. Greenwald; J.W. Hughes; R.R. Parker; M.L. Reinke; G. Wallace; C. Fiore; R. Granetz; A. Hubbard; James H. Irby; E. Marmar; S. Shiraiwa; S.M. Wolfe; S.J. Wukitch; M. Bitter; K. W. Hill; J. R. Wilson

Following the application of lower hybrid current drive (LHCD) power, the core toroidal rotation in Alcator C-Mod L- and H-mode plasmas is found to increment in the counter-current direction, in conjunction with a decrease in the plasma internal inductance, li. Along with the drops in li and the core rotation velocity, there is peaking of the electron and impurity density profiles, as well as of the ion and electron temperature profiles. The mechanism generating the counter-current rotation is unknown, but it is consistent in sign with an inward shift of energetic electron orbits, giving rise to a negative core radial electric field. The peaking in the density, toroidal rotation (in the counter-current direction) and temperature profiles occurs over a time scale similar to the current relaxation time but slow compared with the energy and momentum confinement times. Most of these discharges exhibit sawtooth oscillations throughout, with the inversion radius shifting inward during the LHCD and profile evolution. The magnitudes of the changes in the internal inductance and the central rotation velocity are strongly correlated and found to increase with increasing LHCD power and decreasing electron density. The maximum effect is obtained with a waveguide phasing of 60° (a launched parallel index of refraction n|| ~ 1.5), with a significantly smaller magnitude at 120° (n|| ~ 3.1), and with no effect for negative or heating (180°) phasing. Regardless of the plasma parameters and launched n|| of the waves, there is a strong correlation between the rotation velocity and li changes, possibly providing a clue for the underlying mechanism.


Physics of Plasmas | 2009

Full wave simulation of lower hybrid waves in Maxwellian plasma based on the finite element method

O. Meneghini; S. Shiraiwa; R.R. Parker

A full wave simulation of the lower-hybrid (LH) wave based on the finite element method is presented. For the LH wave, the most important terms of the dielectric tensor are the cold plasma contribution and the electron Landau damping (ELD) term, which depends only on the component of the wave vector parallel to the background magnetic field. The nonlocal hot plasma ELD effect was expressed as a convolution integral along the magnetic field lines and the resultant integro-differential Helmholtz equation was solved iteratively. The LH wave propagation in a Maxwellian tokamak plasma based on the Alcator C experiment was simulated for electron temperatures in the range of 2.5–10 keV. Comparison with ray tracing simulations showed good agreement when the single pass damping is strong. The advantages of the new approach include a significant reduction of computational requirements compared to full wave spectral methods and seamless treatment of the core, the scrape off layer and the launcher regions.


Physics of Plasmas | 2014

20 years of research on the Alcator C-Mod tokamak

M. Greenwald; A. Bader; S. G. Baek; M. Bakhtiari; Harold Barnard; W. Beck; W. Bergerson; I.O. Bespamyatnov; P.T. Bonoli; D. L. Brower; D. Brunner; W. Burke; J. Candy; M. Churchill; I. Cziegler; A. Diallo; A. Dominguez; B.P. Duval; E. Edlund; P. Ennever; D. Ernst; I. Faust; C. Fiore; T. Fredian; O.E. Garcia; C. Gao; J.A. Goetz; T. Golfinopoulos; R. Granetz; O. Grulke

The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-modes performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental observation of ion cyclotron range of frequency (ICRF) mode-conversion, ICRF flow drive, demonstration of lower-hybrid current drive at ITER-like densities and fields and, using a set of novel diagnostics, extensive validation of advanced RF codes. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. A summary of important achievements and discoveries are included.


Nuclear Fusion | 2009

Lower hybrid heating and current drive on the Alcator C-Mod tokamak

R. Wilson; R.R. Parker; M. Bitter; P.T. Bonoli; C. Fiore; R. W. Harvey; K. W. Hill; A. Hubbard; J.W. Hughes; A. Ince-Cushman; C. Kessel; Jinseok Ko; O. Meneghini; C. K. Phillips; M. Porkolab; J. E. Rice; A.E. Schmidt; S. Scott; S. Shiraiwa; Ernest J. Valeo; G. Wallace; John Wright

On the Alcator C-Mod tokamak, lower hybrid current drive (LHCD) is being used to modify the current profile with the aim of obtaining advanced tokamak (AT) performance in plasmas with parameters similar to those that would be required on ITER. To date, power levels in excess of 1 MW at a frequency of 4.6 GHz have been coupled into a variety of plasmas. Experiments have established that LHCD on C-Mod behaves globally as predicted by theory. Bulk current drive efficiencies, n20IlhR/Plh ~ 0.25, inferred from magnetics and MSE are in line with theory. Quantitative comparisons between local measurements, MSE, ECE and hard x-ray bremsstrahlung, and theory/simulation using the GENRAY, TORIC-LH CQL3D and TSC-LSC codes have been performed. These comparisons have demonstrated the off-axis localization of the current drive, its magnitude and location dependence on the launched n∥ spectrum, and the use of LHCD during the current ramp to save volt-seconds and delay the peaking of the current profile. Broadening of the x-ray emission profile during ICRF heating indicates that the current drive location can be controlled by the electron temperature, as expected. In addition, an alteration in the plasma toroidal rotation profile during LHCD has been observed with a significant rotation in the counter-current direction. Notably, the rotation is accompanied by peaking of the density and temperature profiles on a current diffusion time scale inside of the half radius where the LH absorption is taking place.


Physics of Plasmas | 2011

Investigation of lower hybrid physics through power modulation experiments on Alcator C-Mod

A.E. Schmidt; P.T. Bonoli; O. Meneghini; R.R. Parker; M. Porkolab; S. Shiraiwa; G. Wallace; John Wright; R. W. Harvey; J. R. Wilson

Lower hybrid current drive (LHCD) is an attractive tool for off-axis current profile control in magnetically confined tokamak plasmas and burning plasmas (ITER), because of its high current drive efficiency. The LHCD system on Alcator C-Mod operates at 4.6 GHz, with ~ 1 MW of coupled power, and can produce a wide range of launched parallel refractive index (n||) spectra. A 32 chord, perpendicularly viewing hard x-ray camera has been used to measure the spatial and energy distribution of fast electrons generated by lower hybrid (LH) waves. Square-wave modulation of LH power on a time scale much faster than the current relaxation time does not significantly alter the poloidal magnetic field inside the plasma and thus allows for realistic modeling and consistent plasma conditions for different n|| spectra. Inverted hard x-ray profiles show clear changes in LH-driven fast electron location with differing n||. Boxcar binning of hard x-rays during LH power modulation allows for ~ 1 ms time resolution which is s...


Nuclear Fusion | 2006

Development of completely solenoidless tokamak operation in JT-60U

Masayasu Ushigome; S. Ide; S.-I. Itoh; E. Jotaki; Osamu Mitarai; S. Shiraiwa; T. Suzuki; Y. Takase; Shiro Tanaka; T. Fujita; P. Gohil; Y. Kamada; L. L. Lao; T.C. Luce; Y. Miura; O. Naito; T. Ozeki; Peter A. Politzer; Y. Sakamoto

Plasma current start-up to 100 kA was achieved successfully in the JT-60U tokamak without the use of the centre solenoid (completely solenoidless tokamak operation). Only poloidal field coils located on the outboard side of the torus were used, in combination with strong ionization by electron cyclotron (EC) power. The presence of a field null was not necessary for plasma current start-up, but the flux conversion efficiency was low in such a case. In a nearly solenoidless start-up, low neutral pressures were favoured, and the optimum location of the EC resonance was slightly to the high field side of the vacuum vessel centre. The required EC power for efficient utilization of flux swing in JT-60U was about 1 MW. A plasma current of 260 kA was maintained for 1 s by NB only, and plasma current ramp-up from 215 to 310 kA was achieved by EC and neutral beam (NB) only (without lower hybrid current drive (LHCD)). However, the ramp-up efficiency was much lower compared with LHCD. Recharging of the centre solenoid was observed with only counter and perpendicular NB injection, indicating bootstrap overdrive. Integration of these elements can lead to the achievement of a completely solenoidless tokamak operation.


Plasma Physics and Controlled Fusion | 2013

Effects of LH power on SOL density profiles and LH coupling on Alcator C-Mod

C. Lau; Gregory R. Hanson; B. LaBombard; Y. Lin; O. Meneghini; R. Ochoukov; R.R. Parker; S. Shiraiwa; J. L. Terry; G. Wallace; J. B. Wilgen; S.J. Wukitch

A swept-frequency X-mode reflectometer has been used to measure the scrape-off-layer (SOL) density profiles with and without lower hybrid (LH) power at three poloidal locations adjacent to the LH launcher for various plasma parameters in order to understand the coupling of LH waves on Alcator C-Mod. LH power has been observed to create significant poloidal SOL density profile asymmetries that are correlated with visible video camera images of emissivity patterns in front of the LH launcher. The observed density profile asymmetries depend on LH power, , magnetic geometry and magnetic field direction. A 2D diffusive?convective model has been used to show that these density profile modifications are consistent with a LH vortex, where LH power drives E???B drifts that then modify the SOL density profile. In particular, the simulations show that the density profile can possibly create a net poloidally averaged density depletion in front of the waveguide rows. A LH slab coupling model is then used to show that the simulated reflection coefficients strongly depend on the poloidal density profile asymmetries. The simulated LH power reflection coefficients agree with the experimental reflection coefficients only after the observed density depletion is included in the model.

Collaboration


Dive into the S. Shiraiwa's collaboration.

Top Co-Authors

Avatar

R.R. Parker

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

G. Wallace

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

P.T. Bonoli

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S.J. Wukitch

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

B. LaBombard

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Hubbard

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

I. Faust

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J.W. Hughes

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

O. Meneghini

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S. G. Baek

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge