Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saara Qazi is active.

Publication


Featured researches published by Saara Qazi.


Molecular Microbiology | 2004

Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus

Dorte Frees; Arnaud Chastanet; Saara Qazi; Karen Sørensen; Philip J. Hill; Tarek Msadek; Hanne Ingmer

The Hsp100/Clp ATPases constitute a family of closely related proteins of which some members function solely as chaperones whereas others additionally can associate with the unrelated ClpP peptidase forming a Clp proteolytic complex. We have investigated the role of four Clp ATPases in the versatile pathogen, Staphylococcus aureus. Previously, we showed that ClpX is required for expression of major virulence factors and for virulence of S. aureus, but not for survival during heat shock. In the present study, we have inactivated clpC, clpB and clpL and, while none of these mutations affected toxin production, both ClpC and ClpB and to a minor extent ClpL were required for intracellular multiplication within bovine mammary epithelial cells. These defects were paralleled by an inability of the clpC mutant to grow at high temperature and of the clpB mutant to induce thermotolerance indicating that the protective functions of these proteins are required both at high temperature and during infection. By primer extension analysis and footprint studies, we show that expression of clpC and clpB is controlled by the negative heat‐shock regulator, CtsR, and that ClpC is required for its repressor activity. Thus, ClpC is a likely sensor of stress encountered during both environmental stress and infection. In addition to virulence factor production the ability to form biofilms is of importance to S. aureus as a nosocomial pathogen. Interestingly, biofilm formation was reduced in the absence of ClpX or ClpC whereas it was enhanced in the absence of ClpP. Thus, our data show that Clp proteolytic complexes and the Clp ATPases control several key processes of importance to the success of S. aureus as a pathogen.


Molecular Microbiology | 2003

Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence

Dorte Frees; Saara Qazi; Philip J. Hill; Hanne Ingmer

Clp proteolytic complexes are essential for virulence and for survival under stress conditions in several pathogenic bacteria. Recently, a study using signature‐tagged mutagenesis identified the ClpX ATPase as also being required for virulence in Staphylococcus aureus. Presently, we have constructed deletion mutants removing either ClpX or the proteolytic subunit, ClpP, in S. aureus 8325‐4 in order to examine a putative link between stress tolerance and virulence. When exposed to stress, we found that, although clpP mutant cells were sensitive to conditions generating misfolded proteins, the absence of ClpX improved survival. In the presence of oxidative stress or at low temperature, both ClpP and ClpX were important for growth. Virulence was examined in a murine skin abscess model and was found to be severely attenuated for both mutants. S. aureus pathogenicity is largely dependent on a set of extracellular and cell wall‐associated proteins. In the mutant cells, the amount of α‐haemolysin (hla) and several other extracellular proteins was greatly decreased, and analysis of hla expression revealed that the reduction occurred at the transcriptional level. Essential for transcriptional regulation of hla is the quorum‐sensing agr locus. Interestingly, the absence of ClpX or ClpP reduced both transcription of the agr effector molecule, RNA III, and the activity of the autoinducing peptide (AIP). In addition, ClpX was required independently of ClpP for transcription of spa encoding Protein A. Thus, our results indicate that ClpX and ClpP contribute to virulence by controlling the activity of major virulence factors rather than by promoting stress tolerance.


Infection and Immunity | 2001

agr Expression Precedes Escape of Internalized Staphylococcus aureus from the Host Endosome

Saara Qazi; Emilie Counil; Julie A. Morrissey; Catherine E. D. Rees; Alan Cockayne; Klaus Winzer; Weng C. Chan; Paul Williams; Philip J. Hill

ABSTRACT Staphylococcus aureus is a versatile pathogen capable of causing life-threatening infections. Many of its cell wall and exoproduct virulence determinants are controlled via the accessory gene regulator (agr). Although considered primarily as an extracellular pathogen, it is now recognized that S. aureus can be internalized by epithelial and endothelial cells. Traditional experimental approaches to investigate bacterial internalization are extremely time-consuming and notoriously irreproducible. We present here a new reporter gene method to assess intracellular growth of S. aureus in MAC-T cells that utilizes a gfp-luxABCDE reporter operon under the control of the Bacillus megateriumxylA promoter, which in S. aureus is expressed in a growth-dependent manner. This facilitates assessment of the growth of internalized bacteria in a nondestructive assay. The dual gfp-lux reporter cassette was also evaluated as a reporter of agr expression and used to monitor the temporal induction of agr during the MAC-T internalization process. The data obtained suggest thatagr induction occurs prior to endosomal lysis and thatagr-regulated exoproteins appear to be required prior to the release and replication of S. aureus within the infected MAC-T cells.


Infection and Immunity | 2006

N-Acylhomoserine Lactones Antagonize Virulence Gene Expression and Quorum Sensing in Staphylococcus aureus

Saara Qazi; Barry Middleton; Siti Hanna Muharram; Alan Cockayne; Philip J. Hill; Paul O'Shea; Siri Ram Chhabra; Miguel Cámara; Paul Williams

ABSTRACT Many gram-negative bacteria employ N-acylhomoserine lactone (AHL)-mediated quorum sensing to control virulence. To determine whether gram-positive bacteria such as Staphylococcus aureus respond to AHLs, we used a growth-dependent lux reporter fusion. Exposure of S. aureus to different AHLs revealed that 3-oxo-substituted AHLs with C10 to C14 acyl chains inhibited light output and growth in a concentration-dependent manner, while short-chain AHLs had no effect. N-(3-Oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) inhibited the production of exotoxins and cell wall fibronectin-binding proteins but enhanced protein A expression. Since these processes are reciprocally regulated via the S. aureus agr quorum-sensing system, which in turn, is regulated via sar, we examined the effect of AHLs on sarA and agr. At sub-growth-inhibitory concentrations of 3-oxo-C12-HSL, both sarA expression and agr expression were inhibited, indicating that the action of 3-oxo-C12-HSL is mediated at least in part through antagonism of quorum sensing in S. aureus. Spent culture supernatants from Pseudomonas aeruginosa, which produces both 3-oxo-C12-HSL and N-butanoyl-homoserine lactone (C4-HSL), also inhibited agr expression, although C4-HSL itself was inactive in this assay. Since quorum sensing in S. aureus depends on the activities of membrane-associated proteins, such as AgrB, AgrC, and AgrD, we investigated whether AHLs perturbed S. aureus membrane functionality by determining their influence on the membrane dipole potential. From the binding curves obtained, a dissociation constant of 7 μM was obtained for 3-oxo-C12-HSL, indicating the presence of a specific saturable receptor, whereas no binding was observed for C4-HSL. These data demonstrate that long-chain 3-oxo-substituted AHLs, such as 3-oxo-C12-HSL, are capable of interacting with the S. aureus cytoplasmic membrane in a saturable, specific manner and at sub-growth-inhibitory concentrations, down-regulating exotoxin production and both sarA and agr expression.


Journal of Bacteriology | 2006

Functional Analysis of luxS in Staphylococcus aureus Reveals a Role in Metabolism but Not Quorum Sensing

Neil Doherty; Matthew T. G. Holden; Saara Qazi; Paul Williams; Klaus Winzer

The function of AI-2 in many bacteria and the physiological role of LuxS, the enzyme responsible for its production, remain matters of debate. Here, we show that in Staphylococcus aureus the luxS gene forms a monocistronic transcriptional unit under the control of a sigma(70)-dependent promoter. The gene was transcribed throughout growth under a variety of conditions, including intracellular growth in MAC-T cells. AI-2 was produced in rich media under aerobic and anaerobic conditions, peaking during the transition to stationary phase, but was hardly detectable in a sulfur-limited defined medium. In the presence of glucose or under anaerobic conditions, cultures retained considerable AI-2 activity after entry into stationary phase. Inactivation of luxS in various S. aureus strains did not affect virulence-associated traits, such as production of hemolysins and extracellular proteases, biofilm formation, and the agr signaling system. Conversely, AI-2 production remained unchanged in an agr mutant. However, luxS mutants grown in a sulfur-limited defined medium exhibited a growth defect. When grown together with the wild type in mixed culture, luxS mutants of various S. aureus strains showed reduced ability to compete for growth under these conditions. In contrast, a complemented luxS mutant grew as well as the parent strain, suggesting that the observed growth defect was of an intracellular nature and had not been caused by either second-site mutations or the lack of a diffusible factor. However, the LuxS/AI-2 system does not appear to contribute to the overall fitness of S. aureus RN6390B during intracellular growth in epithelial cells: the wild type and a luxS mutant showed very similar growth patterns after their internalization by MAC-T cells.


Journal of Bacteriology | 2004

Real-Time Monitoring of Intracellular Staphylococcus aureus Replication

Saara Qazi; S. E. Harrison; Tim Self; Paul Williams; Philip J. Hill

A high-throughput system to rapidly assess the intracellular replication of Staphylococcus aureus has been developed utilizing S. aureus transformed with a dual gfp-luxABCDE reporter operon under the control of a growth-dependent promoter. Replication of tagged bacteria internalized into bovine mammary epithelial cells (MAC-T) could be measured by monitoring fluorescence and bioluminescence from the reporter operon following removal of extracellular bacteria from the plates. Bacterial replication inside cells was confirmed by a novel ex vivo time-lapse confocal microscopic method. This assay of bacterial replication was used to evaluate the efficacy of antibiotics which are commonly used to treat staphylococcal infections. Not all antibiotics tested were able to prevent intracellular replication of S. aureus and some were ineffective at preventing replication of intracellular bacteria at concentrations above the MIC determined for bacteria in broth culture. Comparison of the fluorescence and bioluminescence signals from the bacteria enabled effects on protein synthesis and metabolism to be discriminated and gave information on the entry of compounds into the eukaryotic cell, even if bacterial replication was not prevented. Elevated resistance of S. aureus to antibiotics inside host cells increases the likelihood of selecting S. aureus strains which are resistant to commonly used antimicrobial agents within the intracellular niche. The approach presented directly assesses intracellular efficacy of antibiotics and provides an evidence-based approach to antibiotic selection for prescribing physicians and medical microbiologists.


Microbial Ecology | 2001

Development of gfp Vectors for Expression in Listeria monocytogenes and Other Low G+C Gram Positive Bacteria

Saara Qazi; Catherine E. D. Rees; Kenneth H. Mellits; Philip J. Hill

The gfp (green fluorescent protein) gene has previously been used to construct a variety of reporter plasmids for Gram-positive bacteria for bacterial localization and gene expression studies. When a native red-shifted gfp variant (gfp3) was cloned into an expression vector using the Pxyn promoter and used to transform the soil-borne pathogen Listeria monocytogenes, only a small proportion of the population was seen to fluoresce when examined by epifluorescence microscopy. When the Pxyn promoter was replaced with the PxylA promoter, with accompanying modification of the translation initiation region of the gfp3 gene, a homogeneously fluorescent population of cells was obtained. When expressed in other Gram-positive organisms, such as Staphylococcus aureus and Bacillus subtilis, the translationally enhanced gene also resulted in high-level and homogeneous GFP production within the bacterial population. High-level expression of these reporter constructs in L. monocytogenes was evaluated to determine if it had any detrimental biological effect during intracellular infection of eukaryotic cell lines. The gfp3+Listeria were found to invade equally as well as the wild-type cells; showing that these expression systems can be used to monitor the bacterium in natural environments. Based on these results, similar translationally enhanced vectors were also developed using unstable GFP3 variants, which retain their short-half life characteristics in L. monocytogenes and therefore can be used as a sensitive monitor of gene expression.


BMC Molecular Biology | 2007

Construction and evaluation of multisite recombinatorial (Gateway) cloning vectors for Gram-positive bacteria

Tania M Perehinec; Saara Qazi; Sanyasi Gaddipati; Vyvyan Salisbury; Catherine Ed Rees; Philip J. Hill

BackgroundThe Gateway recombinatorial cloning system allows easy and rapid joining of DNA fragments. Here we report the construction and evaluation of three different Gram-positive vectors that can be used with the Multisite Gateway cloning system to rapidly produce new gene arrangements in plasmid constructs for use in a variety of Gram-positive bacteria.ResultsComparison of patterns of reporter gene expression with conventionally constructed clones show that the presence of residual recombination (att) sites does not have an effect on patterns of gene expression, although overall levels of gene expression may vary. Rapid construction of these new vectors allowed vector/gene combinations to be optimized following evaluation of plasmid constructs in different bacterial cells and demonstrates the benefits of plasmid construction using Gateway cloning.ConclusionThe residual att sites present after Gateway cloning did not affect patterns of promoter induction in Gram-positive bacteria and there was no evidence of differences in mRNA stability of transcripts. However overall levels of gene expression may be reduced, possibly due to some post-transcriptional event. The new vectors described here allow faster, more efficient cloning in range of Gram-positive bacteria.


PLOS Computational Biology | 2017

Reconstructing promoter activity from Lux bioluminescent reporters

Mudassar Iqbal; Neil Doherty; Anna M. L. Page; Saara Qazi; Ishan Ajmera; Peter A. Lund; Theodore Kypraios; David J. Scott; Philip J. Hill; Dov J. Stekel

The bacterial Lux system is used as a gene expression reporter. It is fast, sensitive and non-destructive, enabling high frequency measurements. Originally developed for bacterial cells, it has also been adapted for eukaryotic cells, and can be used for whole cell biosensors, or in real time with live animals without the need for euthanasia. However, correct interpretation of bioluminescent data is limited: the bioluminescence is different from gene expression because of nonlinear molecular and enzyme dynamics of the Lux system. We have developed a computational approach that, for the first time, allows users of Lux assays to infer gene transcription levels from the light output. This approach is based upon a new mathematical model for Lux activity, that includes the actions of LuxAB, LuxEC and Fre, with improved mechanisms for all reactions, as well as synthesis and turn-over of Lux proteins. The model is calibrated with new experimental data for the LuxAB and Fre reactions from Photorhabdus luminescens—the source of modern Lux reporters—while literature data has been used for LuxEC. Importantly, the data show clear evidence for previously unreported product inhibition for the LuxAB reaction. Model simulations show that predicted bioluminescent profiles can be very different from changes in gene expression, with transient peaks of light output, very similar to light output seen in some experimental data sets. By incorporating the calibrated model into a Bayesian inference scheme, we can reverse engineer promoter activity from the bioluminescence. We show examples where a decrease in bioluminescence would be better interpreted as a switching off of the promoter, or where an increase in bioluminescence would be better interpreted as a longer period of gene expression. This approach could benefit all users of Lux technology.


Microbiology | 2005

sae is essential for expression of the staphylococcal adhesins Eap and Emp

Niamh Harraghy; Jan Kormanec; Christiane Wolz; Dagmar Homerova; Christiane Goerke; Knut Ohlsen; Saara Qazi; Philip J. Hill

Collaboration


Dive into the Saara Qazi's collaboration.

Top Co-Authors

Avatar

Philip J. Hill

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Paul Williams

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Cockayne

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Klaus Winzer

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Neil Doherty

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dorte Frees

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Hanne Ingmer

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge