Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sabrina E. Russo is active.

Publication


Featured researches published by Sabrina E. Russo.


Nature | 2014

Rate of tree carbon accumulation increases continuously with tree size

Nathan L. Stephenson; Adrian J. Das; Richard Condit; Sabrina E. Russo; Patrick J. Baker; Noelle G. Beckman; David A. Coomes; Emily R. Lines; William K. Morris; Nadja Rüger; Eric A. Álvarez; C. Blundo; Sarayudh Bunyavejchewin; G. Chuyong; Stuart J. Davies; Alvaro Duque; Corneille E. N. Ewango; Olivier Flores; Jerry F. Franklin; H. R. Grau; Zhanqing Hao; Mark E. Harmon; Stephen P. Hubbell; David Kenfack; Yiching Lin; Jean-Remy Makana; A. Malizia; Lucio R. Malizia; R. J. Pabst; Nantachai Pongpattananurak

Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle—particularly net primary productivity and carbon storage—increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree’s total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.


Ecology | 2006

INCORPORATING ANIMAL BEHAVIOR INTO SEED DISPERSAL MODELS: IMPLICATIONS FOR SEED SHADOWS

Sabrina E. Russo; Stephen Portnoy; Carol K. Augspurger

Seed dispersal fundamentally influences plant population and community dynamics but is difficult to quantify directly. Consequently, models are frequently used to describe the seed shadow (the seed deposition pattern of a plant population). For vertebrate-dispersed plants, animal behavior is known to influence seed shadows but is poorly integrated in seed dispersal models. Here, we illustrate a modeling approach that incorporates animal behavior and develop a stochastic, spatially explicit simulation model that predicts the seed shadow for a primate-dispersed tree species (Virola calophylla, Myristicaceae) at the forest stand scale. The model was parameterized from field-collected data on fruit production and seed dispersal, behaviors and movement patterns of the key disperser, the spider monkey (Ateles paniscus), densities of dispersed and non-dispersed seeds, and direct estimates of seed dispersal distances. Our model demonstrated that the spatial scale of dispersal for this V. calophylla population was large, as spider monkeys routinely dispersed seeds >>100 m, a commonly used threshold for long-distance dispersal. The simulated seed shadow was heterogeneous, with high spatial variance in seed density resulting largely from behaviors and movement patterns of spider monkeys that aggregated seeds (dispersal at their sleeping sites) and that scattered seeds (dispersal during diurnal foraging and resting). The single-distribution dispersal kernels frequently used to model dispersal substantially underestimated this variance and poorly fit the simulated seed-dispersal curve, primarily because of its multimodality, and a mixture distribution always fit the simulated dispersal curve better. Both seed shadow heterogeneity and dispersal curve multimodality arose directly from these different dispersal processes generated by spider monkeys. Compared to models that did not account for disperser behavior, our modeling approach improved prediction of the seed shadow of this V. calophylla population. An important function of seed dispersal models is to use the seed shadows they predict to estimate components of plant demography, particularly seedling population dynamics and distributions. Our model demonstrated that improved seed shadow prediction for animal-dispersed plants can be accomplished by incorporating spatially explicit information on disperser behavior and movements, using scales large enough to capture routine long-distance dispersal, and using dispersal kernels, such as mixture distributions, that account for spatially aggregated dispersal.


Science | 2006

The Importance of Demographic Niches to Tree Diversity

Richard Condit; Peter S. Ashton; Sarayudh Bunyavejchewin; H. S. Dattaraja; Stuart J. Davies; Shameema Esufali; Corneille E. N. Ewango; Robin B. Foster; I. A. U. N. Gunatilleke; C. V. S. Gunatilleke; Pamela Hall; Kyle E. Harms; Terese B. Hart; Consuelo Hernández; Stephen P. Hubbell; Akira Itoh; Somboon Kiratiprayoon; James V. LaFrankie; Suzanne Loo de Lao; Jean-Remy Makana; Md. Nur Supardi Noor; Abdul Rahman Kassim; Sabrina E. Russo; Raman Sukumar; Cristián Samper; Hebbalalu S. Suresh; Sylvester Tan; Sean C. Thomas; Renato Valencia; Martha Isabel Vallejo

Most ecological hypotheses about species coexistence hinge on species differences, but quantifying trait differences across species in diverse communities is often unfeasible. We examined the variation of demographic traits using a global tropical forest data set covering 4500 species in 10 large-scale tree inventories. With a hierarchical Bayesian approach, we quantified the distribution of mortality and growth rates of all tree species at each site. This allowed us to test the prediction that demographic differences facilitate species richness, as suggested by the theory that a tradeoff between high growth and high survival allows species to coexist. Contrary to the prediction, the most diverse forests had the least demographic variation. Although demographic differences may foster coexistence, they do not explain any of the 16-fold variation in tree species richness observed across the tropics.


International Journal of Primatology | 2005

A Multi-Forest Comparison of Dietary Preferences and Seed Dispersal by Ateles spp.

Sabrina E. Russo; Christina J. Campbell; J. Lawrence Dew; Pablo R. Stevenson; Scott A. Suarez

Investigations of coevolutionary relationships between plants and the animals that disperse their seeds suggest that disperser-plant interactions are likely shaped by diffuse, rather than species-to-species, coevolution. We studied the role of dietary plasticity in shaping the potential for diffuse coevolution by comparing dietary fruit preferences and seed dispersal by 3 species of spider monkeys (Ateles spp.) in 4 moist forests in Colombia, Ecuador, Panama, and Surinam. In all forests, spider monkeys were highly frugivorous and preyed upon seeds of few species. We estimated dietary use of fruiting taxa based on absolute consumption and preference, which accounts for resource availability. Of the 59 genera that comprised the 20 most frequently consumed genera summed in each forest, only 3—Brosimum (Moraceae), Cecropia (Cecropiaceae) and Virola (Myristicaceae)—ranked within the top 20 at every forest. Most genera were within the 20 most frequently consumed at only 1 or 2 forests. Based on preferences, only 4 genera ranked in the 20 most-preferred in all 4 forests: Brosimum, Cecropia, Ficus (Moracae), and Virola. Patterns in fruit consumption and preference at the familial level were similar in that only 2 families—Myristicaceae and Moraceae—were in the 10 most-consumed or most-preferred in all 4 forests. Interforest variation in plant specific composition and abundances and supra-annual fruiting phenologies, combined with dietary flexibility of Ateles spp., may partly explain these patterns. Our results suggest that variation in plant community structure strongly influences dietary preferences, and hence, seed dispersal by spider monkeys. Thus, diffuse coevolution in spider monkey-plant relationships may be limited to few taxa at the generic and familial levels.


Oecologia | 2003

Responses of dispersal agents to tree and fruit traits in Virola calophylla (Myristicaceae): implications for selection

Sabrina E. Russo

Variation in traits affecting seed dispersal in plants has been attributed to selection exerted by dispersal agents. The potential for such selection was investigated in Virola calophylla (Myristicaceae) in Manú National Park, Peru, through identification of seed dispersal agents and of tree and fruit traits significantly affecting the quantity of seeds dispersed. Seventeen bird and one primate species (the spider monkey, Ateles paniscus) dispersed its seeds. Spider monkeys dispersed the majority of seeds (a minimum of 83% of all dispersed seeds). Visitation by dispersal agents depended only on the quantity of ripe fruit available during a tree observation. In contrast, seed removal increased with both greater quantity of ripe fruit and aril: seed ratio. When analyzed separately, seed removal by birds increased only with greater aril: seed ratio, whereas seed removal by spider monkeys was affected by the quantity of ripe fruit and phenological stage. The finding that dispersal agents responded differently to some tree and fruit traits indicates not only that dispersal agents can exert selection on traits affecting seed dispersal, but also that the resulting selection pressures are likely to be inconsistent. This conclusion is supported by the result that the proportion of the seed crop that was dispersed from individual trees, which accounted for cumulative dispersal by all agents, was not influenced by any tree or fruit trait evaluated. Comparing these results with those from studies of V. sebifera and V. nobilis in Panama revealed that the disperser assemblages of these three Virola species were congruent in their similar taxonomic representation. In Panama the proportion of V. nobilis seed crop dispersed was related positively to aril: seed ratio and negatively to seed mass, a result not found for V. calophylla in Peru. The greater importance of dispersal by primates versus birds in V. calophylla, relative to V. nobilis, may explain this difference. Thus, variation in disperser assemblages at regional scales can be another factor contributing to inconsistency in disperser-mediated selection on plant traits.


International Journal of Primatology | 2005

Terrestrial Behavior of Ateles spp.

Christina J. Campbell; Filippo Aureli; Colin A. Chapman; Gabriel Ramos-Fernández; Kim Matthews; Sabrina E. Russo; Scott Suarez; Laura G. Vick

Spider monkeys (Ateles spp.) are well known for their highly arboreal lifestyle, spending much of their time in the highest levels of the canopy and rarely venturing to the ground. To investigate terrestriality by Ateles and to illuminate the conditions under which spider monkeys venture to the ground, we analyzed ad libitum data from 5 study sites, covering 2 species and 5 subspecies. Three of the sites are in Central/North America: Barro Colorado Island (BCI), Panama (Ateles geoffroyi panamensis), Santa Rosa National Park, Costa Rica (A. g. frontatus), and Punta Laguna, Mexico (A. g. yucatanensis). The 2 remaining sites are in South America: Cocha Cashu Biological Station, Perú (A. belzebuth chamek) and Yasuni National Park, Ecuador (A. b. belzebuth). Terrestrialism by Ateles at all sites is rare; however, it is more restricted at the 2 South American sites. In South America, ground use only occurred in the contexts of eating soil or rotten wood and visiting salt licks. In contrast at the 3 sites with Ateles geoffroyi it rarely occurred in a feeding context, but instead more frequently while drinking from streams during the dry season, by adult females escaping attack by adult males, and as part of a chase game. In addition, on BCI adult males were on the ground before attacking adult females. We discuss potential explanations, e.g., climate, species differences, predation pressure, for the differences between the Central/North and South American observations.


The American Naturalist | 2003

Size‐Abundance Relationships in an Amazonian Bird Community: Implications for the Energetic Equivalence Rule

Sabrina E. Russo; Scott K. Robinson; John Terborgh

We studied size‐abundance relationships in a species‐rich Amazonian bird community and found that the slope of the logarithmic relationship between population density and body mass ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape


Landscape Ecology | 2016

Habitat fragmentation and biodiversity conservation: key findings and future challenges

Maxwell C. Wilson; Xiao-Yong Chen; Richard T. Corlett; Raphael K. Didham; Ping Ding; Robert D. Holt; Marcel Holyoak; Guang Hu; Alice C. Hughes; Lin Jiang; William F. Laurance; Jiajia Liu; Stuart L. Pimm; Scott K. Robinson; Sabrina E. Russo; Xingfeng Si; David S. Wilcove; Jianguo Wu; Mingjian Yu


Journal of Tropical Ecology | 2006

Spatial associations of humus, nutrients and soils in mixed dipterocarp forest at Lambir, Sarawak, Malaysian Borneo

I. C. Baillie; Peter S. Ashton; S. P. Chin; Stuart J. Davies; Peter A. Palmiotto; Sabrina E. Russo; Sylvester Tan

b=-0.22


Journal of Ecology | 2015

Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why

C.E. Thimothy Paine; Lucy Amissah; Harald Auge; Christopher Baraloto; Martin Baruffol; Nils Bourland; Helge Bruelheide; Kasso Daïnou; Roland C. de Gouvenain; Jean-Louis Doucet; Susan J. Doust; Paul V. A. Fine; Claire Fortunel; Josephine Haase; Karen D. Holl; Hervé Jactel; Xuefei Li; Kaoru Kitajima; Julia Koricheva; Cristina Martínez-Garza; Christian Messier; Alain Paquette; Christopher D. Philipson; Daniel Piotto; Lourens Poorter; Juan M. Posada; Catherine Potvin; Kalle Rainio; Sabrina E. Russo; Mariacarmen Ruiz-Jaen

Collaboration


Dive into the Sabrina E. Russo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart J. Davies

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valentin Couvreur

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Erik B. Muller

University of California

View shared research outputs
Top Co-Authors

Avatar

Glenn Ledder

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Condit

Field Museum of Natural History

View shared research outputs
Researchain Logo
Decentralizing Knowledge