Sachin P. Gadani
University of Virginia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sachin P. Gadani.
Journal of Immunology | 2012
Sachin P. Gadani; James C. Cronk; Geoffrey T. Norris; Jonathan Kipnis
IL-4 has been extensively studied in the context of its role in immunity. Accumulating evidence indicates, however, that it also plays a critical role in higher functions of the normal brain, such as memory and learning. In this review, we summarize current knowledge of the basic immunology of IL-4, describe how and where this cytokine appears to operate in normal brain function, and propose a hypothesis concerning its potential role in neurological pathologies.
Nature Reviews Immunology | 2012
Jonathan Kipnis; Sachin P. Gadani; Noël C. Derecki
Interactions between the central nervous system and the immune system have been studied primarily in the context of pathology, popularizing the view that interplay between these two systems is inherently detrimental. However, recent experimental data have demonstrated productive neuroimmune interactions that occur under normal physiological conditions. In this Essay, we outline our current understanding of contemporary neuroimmunology, describe a working model of T cell function in support of learning and memory, and offer ideas regarding the selective advantages of immune-mediated effects on brain function.
Nature | 2016
Anthony J. Filiano; Yang Xu; Nicholas J. Tustison; Rachel Marsh; Wendy Baker; Igor Smirnov; Christopher C. Overall; Sachin P. Gadani; Stephen D. Turner; Zhiping Weng; Sayeda Najamussahar Peerzade; Hao Chen; Kevin Lee; Mark P. Beenhakker; Vladimir Litvak; Jonathan Kipnis
Immune dysfunction is commonly associated with several neurological and mental disorders. Although the mechanisms by which peripheral immunity may influence neuronal function are largely unknown, recent findings implicate meningeal immunity influencing behaviour, such as spatial learning and memory. Here we show that meningeal immunity is also critical for social behaviour; mice deficient in adaptive immunity exhibit social deficits and hyper-connectivity of fronto-cortical brain regions. Associations between rodent transcriptomes from brain and cellular transcriptomes in response to T-cell-derived cytokines suggest a strong interaction between social behaviour and interferon-γ (IFN-γ)-driven responses. Concordantly, we demonstrate that inhibitory neurons respond to IFN-γ and increase GABAergic (γ-aminobutyric-acid) currents in projection neurons, suggesting that IFN-γ is a molecular link between meningeal immunity and neural circuits recruited for social behaviour. Meta-analysis of the transcriptomes of a range of organisms reveals that rodents, fish, and flies elevate IFN-γ/JAK-STAT-dependent gene signatures in a social context, suggesting that the IFN-γ signalling pathway could mediate a co-evolutionary link between social/aggregation behaviour and an efficient anti-pathogen response. This study implicates adaptive immune dysfunction, in particular IFN-γ, in disorders characterized by social dysfunction and suggests a co-evolutionary link between social behaviour and an anti-pathogen immune response driven by IFN-γ signalling.
Neuron | 2015
Sachin P. Gadani; James T. Walsh; Igor Smirnov; Jingjing Zheng; Jonathan Kipnis
Inflammation is a prominent feature of CNS injury that heavily influences neuronal survival, yet the signals that initiate and control it remain poorly understood. Here we identify the nuclear alarmin, interleukin (IL)-33, as an important regulator of the innate immune response after CNS injury. IL-33 is expressed widely throughout the healthy brain and is concentrated in white mater due to predominant expression in post-mitotic oligodendrocytes. IL-33 is released immediately after CNS injury from damaged oligodendrocytes, acting on local astrocytes and microglia to induce chemokines critical for monocyte recruitment. Mice lacking IL-33 have impaired recovery after CNS injury, which is associated with reduced myeloid cell infiltrates and decreased induction of M2 genes at the injury site. These results demonstrate a novel molecular mediator contributing to immune cell recruitment to the injured CNS and may lead to new therapeutic insights in CNS injury and neurodegenerative diseases.
Neuron | 2015
Sachin P. Gadani; James T. Walsh; John R. Lukens; Jonathan Kipnis
Fighting pathogens and maintaining tissue homeostasis are prerequisites for survival. Both of these functions are upheld by the immune system, though the latter is often overlooked in the context of the CNS. The mere presence of immune cells in the CNS was long considered a hallmark of pathology, but this view has been recently challenged by studies demonstrating that immunological signaling can confer pivotal neuroprotective effects on the injured CNS. In this review, we describe the temporal sequence of immunological events that follow CNS injury. Beginning with immediate changes at the injury site, including death of neural cells and release of damage-associated molecular patterns (DAMPs), and progressing through innate and adaptive immune responses, we describe the cascade of inflammatory mediators and the implications of their post-injury effects. We conclude by proposing a revised interpretation of immune privilege in the brain, which takes beneficial neuro-immune communications into account.
Brain Research | 2015
Anthony J. Filiano; Sachin P. Gadani; Jonathan Kipnis
It has been known for decades that the immune system has a tremendous impact on behavior. Most work has described the negative role of immune cells on the central nervous system. However, we and others have demonstrated over the last decade that a well-regulated immune system is needed for proper brain function. Here we discuss several neuro-immune interactions, using examples from brain homeostasis and disease states. We will highlight our understanding of the consequences of malfunctioning immunity on neurodevelopment and will discuss the roles of the innate and adaptive immune system in neurodevelopment and how T cells maintain a proper innate immune balance in the brain surroundings and within its parenchyma. Also, we describe how immune imbalance impairs higher order brain functioning, possibly leading to behavioral and cognitive impairment. Lastly, we propose our hypothesis that some behavioral deficits in neurodevelopmental disorders, such as in autism spectrum disorder, are the consequence of malfunctioning immunity. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.
Journal of Experimental Medicine | 2017
Sachin P. Gadani; Igor Smirnov; Ashtyn T. Smith; Christopher C. Overall; Jonathan Kipnis
The meningeal space is occupied by a diverse repertoire of immune cells. Central nervous system (CNS) injury elicits a rapid immune response that affects neuronal survival and recovery, but the role of meningeal inflammation remains poorly understood. Here, we describe type 2 innate lymphocytes (ILC2s) as a novel cell type resident in the healthy meninges that are activated after CNS injury. ILC2s are present throughout the naive mouse meninges, though are concentrated around the dural sinuses, and have a unique transcriptional profile. After spinal cord injury (SCI), meningeal ILC2s are activated in an IL-33–dependent manner, producing type 2 cytokines. Using RNAseq, we characterized the gene programs that underlie the ILC2 activation state. Finally, addition of wild-type lung-derived ILC2s into the meningeal space of IL-33R−/− animals partially improves recovery after SCI. These data characterize ILC2s as a novel meningeal cell type that responds to SCI and could lead to new therapeutic insights for neuroinflammatory conditions.
Nature Immunology | 2015
Sachin P. Gadani; Jonathan Kipnis
The mediobasal hypothalamus detects increased amounts of tumor necrosis factor during the early phases of inflammation and relays this information to cells of the adaptive immune system by mobilizing free fatty acids.
Nature Neuroscience | 2016
Sachin P. Gadani; Jonathan Kipnis
A previously unknown mechanism contributes to dysfunction of the neurogenic niche during CNS autoimmunity. Natural killer cells are retained specifically in the subventricular zone in chronic disease, killing stem cells and promoting pathology.
Journal of Experimental Medicine | 2016
Sachin P. Gadani; Jonathan Kipnis
![Figure][1] Insight from Sachin Gadani (left) and Jonathan Kipnis (right) In this issue of JEM , [Xi et al.][2] describe how inflammation is initiated in the retina, studying the alarmin IL-33. Expressed in healthy tissues and released in conditions of cell damage or stress, alarmins