Saeid Samiezadeh
Ryerson University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saeid Samiezadeh.
Journal of Arthroplasty | 2014
Mansour Abolghasemian; Saeid Samiezadeh; Amir Sternheim; Habiba Bougherara; C. Lowry Barnes; David Backstein
A biomechanical computer-based model was developed to simulate the influence of patellar thickness on passive knee flexion after arthroplasty. Using the computer model of a single-radius, PCL-sacrificing knee prosthesis, a range of patella-implant composite thicknesses was simulated. The biomechanical model was then replicated using two cadaveric knees. A patellar-thickness range of 15 mm was applied to each of the knees. Knee flexion was found to decrease exponentially with increased patellar thickness in both the biomechanical and experimental studies. Importantly, this flexion loss followed an exponential pattern with higher patellar thicknesses in both studies. In order to avoid adverse biomechanical and functional consequences, it is recommended to restore patellar thickness to that of the native knee during total knee arthroplasty.
Journal of Arthroplasty | 2013
Mansour Abolghasemian; Saeid Samiezadeh; Davood Jafari; Habiba Bougherara; Allan E. Gross; Mohammad T. Ghazavi
To study the direction and biomechanical consequences of hip center of rotation (HCOR) migration in Crowe type III and VI hips after total hip arthroplasty, post-operative radiographs and CT scans of several unilaterally affected hips were evaluated. Using a three-dimensional model of the human hip, the HCOR was moved in all directions, and joint reaction force (JRF) and abductor muscle force (AMF) were calculated for single-leg stance configuration. Comparing to the normal side, HCOR had displaced medially and inferiorly by an average of 23.4% and 20.8%, respectively, of the normal femoral head diameter. Significant decreases in JRF (13%) and AMF (46.13%) were observed in a presumptive case with that amount of displacement. Isolated inferior displacement had a small, increasing effect on these forces. In Crowe type III and IV hips, the HCOR migrates inferiorly and medially after THA, resulting in a decrease in JRF, AMF, and abductor muscle contraction force.
Journal of The Mechanical Behavior of Biomedical Materials | 2015
Pouria Tavakkoli Avval; Saeid Samiezadeh; Václav Klika; Habiba Bougherara
Periprosthetic bone loss in response to total hip arthroplasty is a serious complication compromising patients life quality as it may cause the premature failure of the implant. Stress shielding as a result of an uneven load sharing between the hip implant and the bone is a key factor leading to bone density decrease. A number of composite hip implants have been designed so far to improve load sharing characteristics. However, they have rarely been investigated from the bone remodeling point of view to predict a long-term response. This is the first study that employed a mechano-biochemical model, which considers the coupling effect between mechanical loading and bone biochemistry, to investigate bone remodeling after composite hip implantation. In this study, periprosthetic bone remodeling in the presence of Carbon fiber polyamide 12 (CF/PA12), CoCrMo and Ti alloy implants was predicted and compared. Our findings revealed that the most significant periprosthetic bone loss in response to metallic implants occurs in Gruen zone 7 (-43% with CoCrMo; -35% with Ti) and 6 (-40% with CoCrMo; -29% with Ti), while zone 4 has the lowest bone density decrease with all three implants (-9%). Also, the results showed that in terms of bone remodeling, the composite hip implant is more advantageous over the metallic ones as it provides a more uniform density change across the bone and induces less stress shielding which consequently results in a lower post-operative bone loss (-9% with CF/PA12 implant compared to -27% and -21% with CoCrMo and Ti alloy implants, respectively).
Medical Engineering & Physics | 2016
Peter Goshulak; Saeid Samiezadeh; Mina S.R. Aziz; Habiba Bougherara; Radovan Zdero; Emil H. Schemitsch
Short-stem hip implants are increasingly common since they preserve host bone stock and presumably reduce stress shielding by improving load distribution in the proximal femur. Stress shielding may lead to decreased bone density, implant loosening, and fracture. However, few biomechanical studies have examined short-stem hip implants. The purpose of this study was to compare short-stem vs. standard length stemmed implants for stress shielding effects due to anteversion-retroversion, anterior-posterior position, and modular neck offset. Twelve artificial femurs were implanted with either a short-stem modular-neck implant or a conventional length monolithic implant in 0° or 15° of anteversion. Three modular neck options were tested in the short-stem implants. Three control femurs remained intact. Femurs were mounted in adduction and subjected to axial loading. Strain gauge values were collected to validate a Finite Element (FE) model, which was used to simulate the full range of physiologically possible anteversion and anterior-posterior combinations (n = 25 combinations per implant). Calcar stress was compared between implants and across each implants range of anteversion using one and two-way ANOVA. Stress shielding was defined as the overall change in stress compared to an intact femur. The FE model compared well with experimental strains (intact: slope = 0.898, R = 0.943; short-stem: slope = 0.731, R = 0.948; standard-stem: slope = 0.743, R = 0.859); correction factors were used to adjust slopes to unity. No implant anteversion showed significant reduction in stress shielding (α = 0.05, p > 0.05). Stress shielding was significantly higher in the standard-stem implant (63% change from intact femur, p < 0.001) than in short-stem implants (29-39% change, p < 0.001). Short-stem implants reduce stress shielding compared to standard length stemmed implants, while implant anteversion and anterior-posterior position had no effect. Therefore, short-stem implants have a greater likelihood of maintaining calcar bone strength in the long term.
Journal of The Mechanical Behavior of Biomedical Materials | 2016
Saeid Samiezadeh; Zouheir Fawaz; Habiba Bougherara
Intramedullary nails are the golden treatment option for diaphyseal fractures. However, their high stiffness can shield the surrounding bone from the natural physiologic load resulting in subsequent bone loss. Their stiff structure can also delay union by reducing compressive loads at the fracture site, thereby inhibiting secondary bone healing. Composite intramedullary nails have recently been introduced to address these drawbacks. The purpose of this study is to evaluate the mechanical properties of a previously developed composite IM nail made of carbon-fibre/epoxy whose structure was optimized based on fracture healing requirements using the selective stress shielding approach. Following manufacturing, the cross-section of the composite nail was examined under an optical microscope to find the porosity of the structure. Mechanical properties of the proposed composite intramedullary nail were determined using standard tension, compression, bending, and torsion tests. The failed specimens were then examined to obtain the modes of failure. The material showed high strength in tension (403.9±7.8MPa), compression (316.9±10.9MPa), bending (405.3±8.1MPa), and torsion (328.5±7.3MPa). Comparing the flexural modulus (41.1±0.9GPa) with the compressive modulus (10.0±0.2GPa) yielded that the material was significantly more flexible in compression than in bending. This customized flexibility along with the high torsional stiffness of the nail (70.7±2.0Nm(2)) has made it ideal as a fracture fixation device since this unique structure can stabilize the fracture while allowing for compression of fracture ends. Negligible moisture absorption (~0.5%) and low porosity of the laminate structure (< 3%) are other advantages of the proposed structure. The findings suggested that the carbon-fibre/epoxy intramedullary nail is flexible axially while being relatively rigid in bending and torsion and is strong enough in all types of physiologic loading, making it a potential candidate for use as an alternative to the conventional titanium-alloy intramedullary nails.
Journal of Biomechanical Engineering-transactions of The Asme | 2015
Saeid Samiezadeh; Pouria Tavakkoli Avval; Zouheir Fawaz; Habiba Bougherara
The high stiffness of conventional intramedullary (IM) nails may result in stress shielding and subsequent bone loss following healing in long bone fractures. It can also delay union by reducing compressive loads at the fracture site, thereby inhibiting secondary bone healing. This paper introduces a new approach for the optimization of a fiber-reinforced composite nail made of carbon fiber (CF)/epoxy based on a combination of the classical laminate theory, beam theory, finite-element (FE) method, and bone remodeling model using irreversible thermodynamics. The optimization began by altering the composite stacking sequence and thickness to minimize axial stiffness, while maximizing torsional stiffness for a given range of bending stiffnesses. The selected candidates for the seven intervals of bending stiffness were then examined in an experimentally validated FE model to evaluate their mechanical performance in transverse and oblique femoral shaft fractures. It was found that the composite nail having an axial stiffness of 3.70 MN and bending and torsional stiffnesses of 70.3 and 70.9 N⋅m², respectively, showed an overall superiority compared to the other configurations. It increased compression at the fracture site by 344.9 N (31%) on average, while maintaining fracture stability through an average increase of only 0.6 mm (49%) in fracture shear movement in transverse and oblique fractures when compared to a conventional titanium-alloy nail. The long-term results obtained from the bone remodeling model suggest that the proposed composite IM nail reduces bone loss in the femoral shaft from 7.9% to 3.5% when compared to a conventional titanium-alloy nail. This study proposes a number of practical guidelines for the design of composite IM nails.
Medical Engineering & Physics | 2016
Pouria Tavakkoli Avval; Saeid Samiezadeh; Habiba Bougherara
Although bone fracture plates can provide appropriate stability at the fracture site and lead to early patient mobilization, they significantly change the loading pattern in the bone after union (Stress shielding). This phenomenon results in a bone density decrease, which may cause premature failure of the implant. This paper presents the first study that quantifies the long-term response of femoral density to hip implantation and plating (lateral and anterior plating) using a mechano-biochemical model which considers the coupling effect between mechanical loading and biochemical affinities as stimuli for bone remodeling. The results showed that the regions directly beneath the plate experienced severe bone loss (i.e. up to ∼ -70%). However, some level of bone formation was observed in the vicinity of the most proximal and distal screw holes in both lateral and anterior plated femurs (i.e. up to ∼ +110%). The bone under the plate was divided into six zones. With respect to bone remodeling response, the findings revealed that anterior plating was not superior to lateral plating since the maximum and average bone losses among the zones in the anterior plated femur (i.e. -36% and -24%, respectively) were approximately the same as their corresponding values in the lateral plated femur (i.e. -38% and -24%, respectively).
Medical Engineering & Physics | 2017
Gillian E. Cook; Saeid Samiezadeh; Zachary Morison; Mina S.R. Aziz; Habiba Bougherara; Radovan Zdero; Emil H. Schemitsch
Conservative hip implants preserve healthy bone for revision surgeries and improve physiological loading; however, they have little supporting biomechanical data with respect to their 3D orientation during implantation. This study endeavored to determine the optimal 3D orientation of a straight short stem hip implant within the proximal femur that would yield a stress distribution most similar to an intact femur. Synthetic femurs were implanted with a stem in one of seven maximum angles or positions and axially loaded, with resultant strain values used to validate a finite element model. Design of experiments was used to analyze the range of potential implant orientations under three gait cycle loading conditions. A global optimal orientation of 9.14° valgus, 2.49° anteversion, 0.48mm posterior position, and 0.23mm inferior position was found to yield stress distributions most similar to the intact femur across the gait cycle range. In general, it was determined that the valgus orientation was optimal throughout the gait cycle, consistently exhibiting a stress distribution more similar to that of the intact femur. Minimal levels of anterior/posterior and inferior positioning were seen to be beneficial in achieving more physiological stresses in specific regions of interest within the proximal femur, while the anteverted orientation was only beneficial in loading under flexion. Overall, orthopaedic surgeons should aim to implant straight short stem hip implants in valgus up to 10°, with an otherwise neutral position and version, unless some degree of deviation would be beneficial for a patient-specific reason. This work has implications for the best surgical placement of straight short stem hip implants to yield maximal biomechanical stability.
Medical Engineering & Physics | 2017
Mina S.R. Aziz; Omar Dessouki; Saeid Samiezadeh; Habiba Bougherara; Emil H. Schemitsch; Radovan Zdero
Acetabular fractures potentially account for up to half of all pelvic fractures, while pelvic fractures potentially account for over one-tenth of all human bone fractures. This is the first biomechanical study to assess acetabular fracture fixation using plates versus cables in the presence of a total hip arthroplasty, as done for the elderly. In Phase 1, finite element (FE) models compared a standard plate method versus 3 cable methods for repairing an acetabular fracture (type: anterior column plus posterior hemi-transverse) subjected to a physiological-type compressive load of 2207N representing 3 x body weight for a 75kg person during walking. FE stress maps were compared to choose the most mechanically stable cable method, i.e. lowest peak bone stress. In Phase 2, mechanical tests were then done in artificial hemipelvises to compare the standard plate method versus the optimal cable method selected from Phase 1. FE analysis results showed peak bone stresses of 255MPa (Plate method), 205MPa (Mears cable method), 250MPa (Kang cable method), and 181MPa (Mouhsine cable method). Mechanical tests then showed that the Plate method versus the Mouhsine cable method selected from Phase 1 had higher stiffness (662versus 385N/mm, p=0.001), strength (3210versus 2060N, p=0.009), and failure energy (8.8versus 6.2J, p=0.002), whilst they were statistically equivalent for interfragmentary sliding (p≥0.179) and interfragmentary gapping (p≥0.08). The Plate method had superior mechanical properties, but the Mouhsine cable method may be a reasonable alternative if osteoporosis prevents good screw thread interdigitation during plating.
Journal of Composite Materials | 2017
Saeid Samiezadeh; Zouheir Fawaz; Habiba Bougherara
Existing extension–twist coupling in composite tubes can result in undesirable deformations, which may in turn interfere with their normal performance. In this work, a quantitative factor was developed to examine the existence of such coupling in circular composite tubes using the non-classical composite beam theory. The theoretical formulation considered transverse shear and three-dimensional (3D) elastic effects in laminated walls. Therefore, the coupling factor can be used in both thin-walled and thick-walled composite tubes. The numerical values for the coupling factor calculated using the present approach were compared to those obtained from a 3D validated finite element model on 10 composite tubes with different stacking sequences. The findings suggested that the coupling factor could accurately detect existing coupling between extension and twist in composite tubes regardless of their stacking sequence. The paper also proposed a number of design guidelines that could be used in order to eliminate the extension–twist coupling in composite tubes.