Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Said Kinani is active.

Publication


Featured researches published by Said Kinani.


Environmental Pollution | 2010

Bioanalytical characterisation of multiple endocrine- and dioxin-like activities in sediments from reference and impacted small rivers

Said Kinani; Stéphane Bouchonnet; Nicolas Creusot; Sophie Bourcier; Patrick Balaguer; Jean-Marc Porcher; Selim Ait-Aissa

A comprehensive evaluation of organic contamination was performed in sediments sampled in two reference and three impacted small streams where endocrine disruptive (ED) effects in fish have been evidenced. The approach combined quantitative chemical analyses of more than 50 ED chemicals (EDCs) and a battery of in vitro bioassays allowing the quantification of receptor-mediated activities, namely estrogen (ER), androgen (AR), dioxin (AhR) and pregnane X (PXR) receptors. At the most impacted sites, chemical analyses showed the presence of natural estrogens, organochlorine pesticides, parabens, polycyclic aromatic hydrocarbons (16 PAHs), bisphenol A and alkylphenols, while synthetic steroids, myco-estrogens and phyto-estrogens were not detected. Determination of toxic-equivalent amounts showed that 28-96% of estrogenic activities in bioassays (0.2-6.3 ng/g 17beta-estradiol equivalents) were explained by 17beta-estradiol and estrone. PAHs were major contributors (20-60%) to the total dioxin-like activities. Interestingly, high PXR and (anti)AR activities were detected; however, the targeted analysed compounds could not explain the measured biological activities. This study highlighted the presence of multiple organic EDCs in French river sediments subjected to mixed diffuse pollution, and argues for the need to further identify AR and PXR active compounds in the aquatic environment.


Science of The Total Environment | 2008

Monitoring of dioxin-like, estrogenic and anti-androgenic activities in sediments of the Bizerta lagoon (Tunisia) by means of in vitro cell-based bioassays: Contribution of low concentrations of polynuclear aromatic hydrocarbons (PAHs)

I. Louiz; Said Kinani; M.-E. Gouze; M. Ben-Attia; D. Menif; Stéphane Bouchonnet; Jean-Marc Porcher; O.K. Ben-Hassine; Selim Ait-Aissa

We used an array of in vitro cell-based bioassays to assess dioxin-like, estrogenic and (anti-)androgenic activities in organic extracts of sediments from the Bizerta lagoon, one of the largest Tunisian lagoons subjected to various anthropogenic and industrial pressures. The sediments were sampled both in winter and summer 2006 in 6 stations differently impacted and in one reference station located in the seawards entrance of Ghar el Melh lagoon. Chemical analyses of the 16 priority PAHs showed that the sediments were low to moderately contaminated (2-537 ng/g dry weight). By using the estrogen- (MELN) and androgen-responsive (MDA-kb2) reporter cell lines, significant estrogenic and anti-androgenic activities were detected only in the Menzel Bourguiba (MB) site, the most contaminated site, both in winter and summer. By using 7-ethoxyresorufin-O-deethylase (EROD) induction in the fish PLHC-1 cell line after both 4 and 24 h of cell exposure, dioxin-like activities were detected in all analysed samples. Dioxin-like activities were higher after 4 h exposure, and varied according to the sites and the sampling season. While highly significant correlation was observed between bioassay- and chemical analyses-derived toxic equivalents (TEQs), PAHs accounted for only a small part (up to 4%) of the detected biological activities, suggesting that other readily metabolised EROD-inducing compounds were present. This study argues for the use of short time exposure to assess biological TEQs in low contaminated samples and provides new induction equivalent factors (IEF(4h)) for 16 PAHs in the PLHC-1 cell line. Finally, our results stress the need to further characterise the nature of organic chemical contamination as well as its long-term impacts on aquatic wildlife in the Bizerta lagoon.


Analytical and Bioanalytical Chemistry | 2010

Evaluation of an hPXR reporter gene assay for the detection of aquatic emerging pollutants: screening of chemicals and application to water samples

Nicolas Creusot; Said Kinani; Patrick Balaguer; Nathalie Tapie; Karyn LeMenach; Emmanuelle Maillot-Maréchal; Jean-Marc Porcher; Hélène Budzinski; Selim Ait-Aissa

Many environmental endocrine-disrupting compounds act as ligands for nuclear receptors. Among these receptors, the human pregnane X receptor (hPXR) is well described as a xenobiotic sensor to various classes of chemicals, including pharmaceuticals, pesticides, and steroids. To assess the potential use of PXR as a sensor for aquatic emerging pollutants, we employed an in vitro reporter gene assay (HG5LN-hPXR cells) to screen a panel of environmental chemicals and to assess PXR-active chemicals in (waste) water samples. Of the 57 compounds tested, 37 were active in the bioassay and 10 were identified as new PXR agonists: triazin pesticides (promethryn, terbuthryn, terbutylazine), pharmaceuticals (fenofibrate, bezafibrate, clonazepam, medazepam) and non co-planar polychlorobiphenyls (PCBs; PCB101, 138, 180). Furthermore, we detected potent PXR activity in two types of water samples: passive polar organic compounds integrative sampler (POCIS) extracts from a river moderately impacted by agricultural and urban inputs and three effluents from sewage treatment works (STW). Fractionation of POCIS samples showed the highest PXR activity in the less polar fraction, while in the effluents, PXR activity was mainly associated with the dissolved water phase. Chemical analyses quantified several PXR-active substances (i.e., alkylphenols, hormones, pharmaceuticals, pesticides, PCBs, bisphenol A) in POCIS fractions and effluent extracts. However, mass-balance calculations showed that the analyzed compounds explained only 0.03% and 1.4% of biological activity measured in POCIS and STW samples, respectively. In effluents, bisphenol A and 4-tert-octylphenol were identified as main contributors of instrumentally derived PXR activities. Finally, the PXR bioassay provided complementary information as compared to estrogenic, androgenic, and dioxin-like activity measured in these samples. This study shows the usefulness of HG5LN-hPXR cells to detect PXR-active compounds in water samples, and further investigation will be necessary to identify the detected active compounds.


Analytical and Bioanalytical Chemistry | 2013

Effect-directed analysis of endocrine-disrupting compounds in multi-contaminated sediment: identification of novel ligands of estrogen and pregnane X receptors

Nicolas Creusot; Hélène Budzinski; Patrick Balaguer; Said Kinani; Jean-Marc Porcher; Selim Ait-Aissa

Effect-directed analysis (EDA)-based strategies have been increasingly used in order to identify the causative link between adverse (eco-)toxic effects and chemical contaminants. In this study, we report the development and use of an EDA approach to identify endocrine-disrupting chemicals (EDCs) in a multi-contaminated river sediment. The battery of in vitro reporter cell-based bioassays, measuring estrogenic, (anti)androgenic, dioxin-like, and pregnane X receptor (PXR)-like activities, revealed multi-contamination profiles. To isolate active compounds of a wide polarity range, we established a multi-step fractionation procedure combining: (1) a primary fractionation step using normal phase-based solid-phase extraction (SPE), validated with a mixture of 12 non-polar to polar standard EDCs; (2) a secondary fractionation using reversed-phase-based high-performance liquid chromatography (RP-HPLC) calibrated with 33 standard EDCs; and (3) a purification step using a recombinant estrogen receptor (ER) affinity column. In vitro SPE and HPLC profiles revealed that ER and PXR activities were mainly due to polar to mid-polar compounds, while dioxin-like and anti-androgenic activities were in the less polar fractions. The overall procedure allowed final isolation and identification of new environmental PXR (e.g., di-iso-octylphthalate) and ER (e.g., 2,4-di-tert-butylphenol and 2,6-di-tert-butyl-α-methoxy-p-cresol) ligands by using gas chromatography coupled with mass spectrometry with full-scan mode acquisition in mid-polar fractions. In vitro biological activity of these chemicals was further confirmed using commercial standards, with di-iso-octylphthalate identified for the first time as a potent hPXR environmental agonist.


Journal of Chromatography A | 2008

Study of the chemical derivatization of zearalenone and its metabolites for gas chromatography-mass spectrometry analysis of environmental samples.

Said Kinani; Stéphane Bouchonnet; Sophie Bourcier; Jean-Marc Porcher; Selim Ait-Aissa

This study compares different silylation procedures of zearalenone and its metabolites: alpha-zearalenol, beta-zearalenol, zearalanone, alpha-zearalanol and beta-zearalanol for gas chromatography-mass spectrometry (GC-MS) analysis. Four silylating agents among the most frequently used to derivatize polar organic compounds were tested: N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA), N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA), N,N-diethyltrimethylsilylamine (TMSDEA) and a commercial mixture of N,O-bis(trimethylsilyl)acetamide, trimethylchlorosilane and N-trimethylsilyimidazole. Previous studies showed that the addition of polar and/or basic solvents can significantly improve the yield of a reaction of derivatization. In this work, four solvents were tested: pyridine, dimethylformamide, acetonitrile and acetone. The influence of each solvent was studied as a function of the silylating agent/solvent ratio. The influences of the temperature and of the reaction time on the reaction yields were also evaluated. A GC-MS quantitation method associating methanol chemical ionization and selected ion storage with three ions was developed and successfully tested on a reconstituted sediment spiked in zearalenone and its metabolites.


Rapid Communications in Mass Spectrometry | 2008

Extraction and purification procedures for simultaneous quantification of phenolic xenoestrogens and steroid estrogens in river sediment by gas chromatography/ion trap mass spectrometry

Said Kinani; Stéphane Bouchonnet; Sophie Bourcier; Nicolas Creusot; Jean-Marc Porcher; Selim Ait-Aissa

A sensitive and simple method based on ultrasonication extraction with a hexane/acetone (2:1, v/v) mixture, followed by clean up of the extract by solid-phase extraction (SPE) and gas chromatography/mass spectrometry (GC/MS) detection, has been developed and validated for the analysis of 20 estrogenic endocrine-disrupting chemicals (EEDCs) including phenolic xenoestrogens, synthetic and natural estrogens in river sediment. After extraction and purification, analytes are derivatised with a BSTFA/TMCS/pyridine (49:1:50, v/v/v) mixture and quantified by GC/MS. The GC/MS method involves switching between electron ionisation (EI) and chemical ionisation (CI); it also switches between selected ion storage and tandem mass spectrometry detection. The applicability of the method has been demonstrated by analysing extracts of French river sediments for which bioanalytical tests (in vitro) had already shown that they were impacted by estrogenic endocrine disrupters. The biological contribution of all the products detected in each sediment extract was compared to the estrogenic activity measured by bioassays.


Rapid Communications in Mass Spectrometry | 2011

Investigation of the dissociation pathways of metolachlor, acetochlor and alachlor under electron ionization – application to the identification of ozonation products

Stéphane Bouchonnet; Said Kinani; Yasmine Souissi; Sophie Bourcier; Michel Sablier; Pascal Roche; Véronique Boireau; Valérie Ingrand

With the future aim of using gas chromatography coupled with mass spectrometry to characterize the transformation products of ozonated herbicides: metolachlor, acetochlor and alachlor, an interpretation of their electron ionization mass spectra is presented. Fragmentation mechanisms are proposed on the basis of isotopic labelling and multiple-stage mass spectrometry experiments carried out on an ion trap mass spectrometer. We also give examples in order to demonstrate how the elucidation of such fragmentation mechanisms for herbicides may simplify the characterization of their ozonation products.


Rapid Communications in Mass Spectrometry | 2010

Elucidation of the decomposition pathways of protonated and deprotonated estrone ions: application to the identification of photolysis products.

Sophie Bourcier; Clémentine Poisson; Yasmine Souissi; Said Kinani; Stéphane Bouchonnet; Michel Sablier

With the future aim of elucidating the unknown structures of estrogen degradation products, we characterized the dissociation pathways of protonated estrone (E1) under collisional activation in liquid chromatography/tandem mass spectrometry (LC/MS/MS) experiments employing a quadrupole time-of-flight mass spectrometer. Positive ion and negative ion modes give information on the protonated and deprotonated molecules and their product ions. The mass spectra of estrone methyl ether (CH(3)-E1) and estrone-d(4) (E1-d(4)) were compared with that of E1 in order (i) to elucidate the dissociation mechanisms of protonated and deprotonated molecules and (ii) to propose likely structures for each product ions. The positive ion acquisition mode yielded more fragmentation. The mass spectra of E1 were compared with those of estradiol (E2), estriol (E3) and 17-ethynylestradiol (EE2). This comparison allowed the identification of marker ions for each ring of the estrogenic structure. Accurate mass measurements have been carried out for all the identified ions. The resulting ions revealed to be useful for the characterization of structural modifications induced by photolysis on each ring of the estrone molecule. These results are very promising for the determination of new metabolites in the environment.


Analytical Chemistry | 2009

Analysis of the volatile organic matter of engine piston deposits by direct sample introduction thermal desorption gas chromatography/mass spectrometry.

Moussa Diaby; Said Kinani; Christophe Genty; Stéphane Bouchonnet; Michel Sablier; A. Le Negrate; M. El Fassi

This article establishes an alternative method for the characterization of volatiles organic matter (VOM) contained in deposits of the piston first ring grooves of diesel engines using a ChromatoProbe direct sample introduction (DSI) device coupled to gas chromatography/mass spectrometry (GC/MS) analysis. The addition of an organic solvent during thermal desorption leads to an efficient extraction and a good chromatographic separation of extracted products. The method was optimized investigating the effects of several solvents, the volume added to the solid sample, and temperature programming of the ChromatoProbe DSI device. The best results for thermal desorption were found using toluene as an extraction solvent and heating the programmable temperature injector from room temperature to 300 degrees C with a temperature step of 105 degrees C. With the use of the optimized thermal desorption conditions, several components have been positively identified in the volatile fraction of the deposits: aromatics, antioxidants, and antioxidant degradation products. Moreover, this work highlighted the presence of diesel fuel in the VOM of the piston deposits and gave new facts on the absence of the role of diesel fuel in the deposit formation process. Most importantly, it opens the possibility of quickly performing the analysis of deposits with small amounts of samples while having a good separation of the volatiles.


Environmental Science and Pollution Research | 2014

Photolysis of estrone generates estrogenic photoproducts with higher activity than the parent compound

Yasmine Souissi; Said Kinani; Stéphane Bouchonnet; Sophie Bourcier; Christian Malosse; Michel Sablier; Nicolas Creusot; Enrico Mombelli; Selim Ait-Aissa

In the present study, we aimed to evaluate the effect of UV-visible irradiation on the estrogenicity of an estrone aqueous solution by using chemical analysis associated with an in vitro bioassay and in silico analysis. An estrone aqueous solution was irradiated with an UV-visible high-pressure mercury lamp. By using the MELN in vitro cellular bioassay, based on the induction of a luciferase reporter gene upon the activation of the estrogen receptor by chemicals, we showed that the estrogenic potency of the solution increased after irradiation. High-performance liquid chromatography fractionation of the photolyzed solution followed by in vitro testing of fractions allowed the quantitation of the estrogenic potency of each fraction. Nine photoproducts were detected and characterized by liquid chromatography-mass spectrometry coupling. The observed estrogenic activity is mediated by mono- and multi-hydroxylated photoproducts; it is influenced by the position of hydroxyl groups on the steroidal skeleton. In addition, a structure-activity analysis of the hydroxylated photoproducts confirmed their ability to act as estrogen receptor ligands.

Collaboration


Dive into the Said Kinani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Marc Porcher

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge