Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasmine Souissi is active.

Publication


Featured researches published by Yasmine Souissi.


Science of The Total Environment | 2013

Identification and ecotoxicity of degradation products of chloroacetamide herbicides from UV-treatment of water

Yasmine Souissi; Stéphane Bouchonnet; Sophie Bourcier; Kresten Ole Kusk; Michel Sablier; Henrik Rasmus Andersen

The widespread occurrence of chlorinated herbicides and their degradation products in the aquatic environment raises health and environmental concerns. As a consequence pesticides, and to a lesser degree their degradation products, are monitored by authorities both in surface waters and drinking waters. In this study the formation of degradation products from ultraviolet (UV) treatment of the three chloroacetamide herbicides acetochlor, alachlor and metolachlor and their biological effects were investigated. UV treatment is mainly used for disinfection in water and wastewater treatments. First, the chemical structures of the main UV-degradation products were identified using gas chromatography coupled with mass spectrometry and liquid chromatography-mass spectrometry. The main transformation reactions were dechlorination, mono- and multi-hydroxylation and cyclizations. The ecotoxicity of the mixed photoproducts formed by UV-treatment until 90% of the original pesticide was converted was compared to the toxicity of chloroacetamides using the green alga Pseudokirchneriella subcapitata, the crustacean Daphnia magna and the marine bacteria Vibrio fischeri as test organisms. UV-treatment of alachlor and metolachlor increased the toxicity compared to the parent compounds while an equal toxicity was found for photolysis products of acetochlor. This suggests that toxic photodegradation products are generated from chloroacetamides under UV-treatment. An important perspective of this finding is that the photolysis products are at least as toxic as the parent compounds.


Rapid Communications in Mass Spectrometry | 2011

Investigation of the dissociation pathways of metolachlor, acetochlor and alachlor under electron ionization – application to the identification of ozonation products

Stéphane Bouchonnet; Said Kinani; Yasmine Souissi; Sophie Bourcier; Michel Sablier; Pascal Roche; Véronique Boireau; Valérie Ingrand

With the future aim of using gas chromatography coupled with mass spectrometry to characterize the transformation products of ozonated herbicides: metolachlor, acetochlor and alachlor, an interpretation of their electron ionization mass spectra is presented. Fragmentation mechanisms are proposed on the basis of isotopic labelling and multiple-stage mass spectrometry experiments carried out on an ion trap mass spectrometer. We also give examples in order to demonstrate how the elucidation of such fragmentation mechanisms for herbicides may simplify the characterization of their ozonation products.


Rapid Communications in Mass Spectrometry | 2010

Elucidation of the decomposition pathways of protonated and deprotonated estrone ions: application to the identification of photolysis products.

Sophie Bourcier; Clémentine Poisson; Yasmine Souissi; Said Kinani; Stéphane Bouchonnet; Michel Sablier

With the future aim of elucidating the unknown structures of estrogen degradation products, we characterized the dissociation pathways of protonated estrone (E1) under collisional activation in liquid chromatography/tandem mass spectrometry (LC/MS/MS) experiments employing a quadrupole time-of-flight mass spectrometer. Positive ion and negative ion modes give information on the protonated and deprotonated molecules and their product ions. The mass spectra of estrone methyl ether (CH(3)-E1) and estrone-d(4) (E1-d(4)) were compared with that of E1 in order (i) to elucidate the dissociation mechanisms of protonated and deprotonated molecules and (ii) to propose likely structures for each product ions. The positive ion acquisition mode yielded more fragmentation. The mass spectra of E1 were compared with those of estradiol (E2), estriol (E3) and 17-ethynylestradiol (EE2). This comparison allowed the identification of marker ions for each ring of the estrogenic structure. Accurate mass measurements have been carried out for all the identified ions. The resulting ions revealed to be useful for the characterization of structural modifications induced by photolysis on each ring of the estrone molecule. These results are very promising for the determination of new metabolites in the environment.


Chemosphere | 2012

Estrone direct photolysis: By-product identification using LC-Q-TOF

Yasmine Souissi; Sophie Bourcier; Stéphane Bouchonnet; Christophe Genty; Michel Sablier

The identification of degradation products generated upon photolysis of estrone (E1), a natural estrogenic hormone, under simulated UV irradiation conditions was addressed by the use of LC-Q-TOF mass spectrometry. The structures of the main degradation products were elucidated, demonstrating how the use of model molecules 5,6,7,8-tetrahydro-2-naphtol (THN), 2-methylcyclopentanone (MCP), labeled molecule estrone D(4) (E1-D(4)), the investigation of the fragmentation pathways of the parent E1, the concurrent use of CID and exact mass measurements permit the characterization of structural modifications induced by photodegradation processes. In the present study, we identified nine major by-products of which seven photoproducts correspond to E1H(+) modified in positions other than the C-2, C-4 and C-16 of E1. Most of them showed one to three additional hydroxylations preferentially located on the aromatic ring of the parent E1, which confirms that these products may present environmental risk. Applications to real water samples have been conducted to extend the validity of the present study to environmental samples.


Journal of Mass Spectrometry | 2012

Characterization of the photodegradation products of metolachlor: structural elucidation, potential toxicity and persistence

Sarah Coffinet; Ahmad Rifai; Christophe Genty; Yasmine Souissi; Sophie Bourcier; Michel Sablier; Stéphane Bouchonnet

Aqueous solutions of metolachlor and metolachlor-d(6) were photolyzed with UV-visible radiations. The structures of 15 by-products of metolachlor were determined through gas chromatography-mass spectrometry analyses using electron and chemical ionization combined with multistage mass spectrometry. The photolysis by-products of metolachlor resulted mainly from dehalogenation and hydroxylation, in some cases accompanied by cyclization. In silico tests for toxicity prediction showed that the toxicity of some photolysis products is expected to be greater than that of metolachlor. Persistence studies showed that the by-product relative abundances vary in large amounts with the irradiation time. The post-photolysis evolution of the solution was also studied, in order to determine the persistence of the main by-products. It allowed to establish that most of the by-products can be found more than 12 h after the end of the photolysis, which is of a great concern as treated water is generally available for consumption only a few hours after treatment in most of industrial processes.


Rapid Communications in Mass Spectrometry | 2013

Ultraviolet degradation of procymidone – structural characterization by gas chromatography coupled with mass spectrometry and potential toxicity of photoproducts using in silico tests

Ahmad Rifai; Yasmine Souissi; Christophe Genty; Carine Clavaguéra; Sophie Bourcier; Farouk Jaber; Stéphane Bouchonnet

RATIONALE Procymidone is a dicarboximide fungicide mainly used for vineyard protection but also for different crops. The structural elucidation of by-products arising from the UV-visible photodegradation of procymidone has been investigated by gas chromatography coupled with mass spectrometry. The potential toxicities of photoproducts were estimated by in silico tests. METHODS Aqueous solutions of procymidone were irradiated for up to 90 min in a self-made reactor equipped with a mercury lamp. Analyses were carried out on a gas chromatograph coupled with an ion trap mass spectrometer operated in electron ionization and methanol positive chemical ionization. Multistage collision-induced dissociation (CID) experiments were performed to establish dissociation pathways of ions. Toxicities of byproducts were estimated using the QSAR T.E.S.T. program. RESULTS Sixteen photoproducts were investigated. Chemical structures were proposed mainly based on the interpretation of multistage CID experiments, but also on their relative retention times and kinetics data. These structures enabled photodegradation pathways to be suggested. Only three photoproducts remain present after 90 min of irradiation. Among them, 3,5-dichloroaniline presents a predicted rat LD50 toxicity about ten times greater than that of procymidone. CONCLUSIONS 3,5-Dichloroaniline is the only photoproduct reported in previous articles. Eight by-products among the sixteen characterized might be as toxic, if not more, than procymidone itself considering the QSAR-predicted rat LD50.


Rapid Communications in Mass Spectrometry | 2014

UV-visible degradation of boscalid – structural characterization of photoproducts and potential toxicity using in silico tests

Yannick Lassalle; Aziz Kinani; Ahmad Rifai; Yasmine Souissi; Carine Clavaguéra; Sophie Bourcier; Farouk Jaber; Stéphane Bouchonnet

RATIONALE Boscalid is a carboximide fungicide mainly used for vineyard protection as well as for tomato, apple, blueberry and various ornamental cultivations. The structural elucidation of by-products arising from the UV-visible photodegradation of boscalid has been investigated by gas chromatography/multi-stage mass spectrometry (GC/MS(n) ) and liquid chromatography/tandem mass spectrometry (LC/MS/MS) couplings. The potential toxicities of transformation products were estimated by in silico calculations. METHODS Aqueous solutions of boscalid were irradiated up to 150 min in a self-made reactor equipped with a mercury lamp. Analyses were carried out using a gas chromatograph coupled with an ion trap mass spectrometer operated in both electron ionization (EI) and chemical ionization (CI) modes and a liquid chromatograph coupled with a quadrupole time-of-flight (Q-TOF) mass spectrometer operated in electrospray ionization (ESI) mode. Multiple-stage collision-induced dissociation (CID) experiments were performed to establish dissociation pathways of ions. The QSAR (Quantitative Structure-Activity Relationship) T.E.S.T. program allowed the estimation of the toxicities of the by-products. RESULTS Eight photoproducts were investigated. Chemical structures were proposed not only on the interpretation of multi-stage CID experiments, but also on kinetics data. These structures led us to suggest photodegradation pathways. Three photoproducts were finally detected in Lebanon in a real sample of grape leaves for which routine analysis had led to the detection of boscalid at 4 mg kg(-1). CONCLUSIONS With one exception, the structures proposed for the photoproducts on the basis of mass spectra interpretation have not been reported in previous studies. In silico toxicity predictions showed that two photoproducts are potentially more toxic than the parent compound considering oral rat LD50 while five photoproducts may induce mutagenic toxicity. With the exception of one compound, all photoproducts may potentially induce developmental toxicity.


Journal of Chromatography A | 2014

Ultraviolet-vis degradation of iprodione and estimation of the acute toxicity of its photodegradation products.

Yannick Lassalle; Héla Jellouli; Laurie Ballerini; Yasmine Souissi; Edith Nicol; Sophie Bourcier; Stéphane Bouchonnet

The UV-vis photodegradation of iprodione in water was investigated with a high pressure mercury lamp photoreactor. Five photoproducts of iprodione were characterized by LC-HR-MS/MS and isotopic labeling; none of them has been reported in previous studies. Three of them result from the elimination of one or two chlorine atoms followed by hydroxy or hydrogen addition while the two others are cyclic isomers of iprodione. An ICR mass spectrometer was used for by-products identification; concentrations of photoproducts were estimated with a triple quadrupole instrument, using iprodione-D5 as an internal standard. Phototransformation mechanisms were postulated to rationalize photoproducts formation. In silico QSAR toxicity predictions were conducted with the Toxicity Estimation Software Tool (T.E.S.T.) considering oral rat LD50, mutagenicity and developmental toxicity. Low oral rat LD50 values of 350 mg/kg and 759 mg/kg were predicted for cyclic isomers of iprodione, compared to that of the parent molecule (2776 mg/kg). Toxicity estimations exhibited that all the iprodione photoproducts could be mutagenic while the parent compound is not. In vitro assays on Vibrio fischeri were achieved on both irradiated and non-irradiated aqueous solutions of iprodione and on HPLC fractions containing isolated photoproducts. Phenolic photoproducts were shown to be mainly responsible for toxicity enhancement with EC50 values of 0.3 and 0.5 ppm, for the bi- and mono-phenolic compounds issued from chlorine elimination.


Environmental Science and Pollution Research | 2014

Photolysis of estrone generates estrogenic photoproducts with higher activity than the parent compound

Yasmine Souissi; Said Kinani; Stéphane Bouchonnet; Sophie Bourcier; Christian Malosse; Michel Sablier; Nicolas Creusot; Enrico Mombelli; Selim Ait-Aissa

In the present study, we aimed to evaluate the effect of UV-visible irradiation on the estrogenicity of an estrone aqueous solution by using chemical analysis associated with an in vitro bioassay and in silico analysis. An estrone aqueous solution was irradiated with an UV-visible high-pressure mercury lamp. By using the MELN in vitro cellular bioassay, based on the induction of a luciferase reporter gene upon the activation of the estrogen receptor by chemicals, we showed that the estrogenic potency of the solution increased after irradiation. High-performance liquid chromatography fractionation of the photolyzed solution followed by in vitro testing of fractions allowed the quantitation of the estrogenic potency of each fraction. Nine photoproducts were detected and characterized by liquid chromatography-mass spectrometry coupling. The observed estrogenic activity is mediated by mono- and multi-hydroxylated photoproducts; it is influenced by the position of hydroxyl groups on the steroidal skeleton. In addition, a structure-activity analysis of the hydroxylated photoproducts confirmed their ability to act as estrogen receptor ligands.


Trends in Analytical Chemistry | 2012

Analysis of inorganic chloramines in water

Said Kinani; Bertille Richard; Yasmine Souissi; Stéphane Bouchonnet

Collaboration


Dive into the Yasmine Souissi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stéphane Bouchonnet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge