Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sally L. Ricketts is active.

Publication


Featured researches published by Sally L. Ricketts.


The Lancet | 2010

Triglyceride-mediated pathways and coronary disease: Collaborative analysis of 101 studies

Nadeem Sarwar; Manjinder S. Sandhu; Sally L. Ricketts; Adam S. Butterworth; E Di Angelantonio; S. M. Boekholdt; Willem H. Ouwehand; Hugh Watkins; Nilesh J. Samani; Danish Saleheen; Debbie A. Lawlor; Muredach P. Reilly; Aroon D. Hingorani; P.J. Talmud; John Danesh

Summary Background Whether triglyceride-mediated pathways are causally relevant to coronary heart disease is uncertain. We studied a genetic variant that regulates triglyceride concentration to help judge likelihood of causality. Methods We assessed the −1131T>C (rs662799) promoter polymorphism of the apolipoprotein A5 (APOA5) gene in relation to triglyceride concentration, several other risk factors, and risk of coronary heart disease. We compared disease risk for genetically-raised triglyceride concentration (20 842 patients with coronary heart disease, 35 206 controls) with that recorded for equivalent differences in circulating triglyceride concentration in prospective studies (302 430 participants with no history of cardiovascular disease; 12 785 incident cases of coronary heart disease during 2·79 million person-years at risk). We analysed −1131T>C in 1795 people without a history of cardiovascular disease who had information about lipoprotein concentration and diameter obtained by nuclear magnetic resonance spectroscopy. Findings The minor allele frequency of −1131T>C was 8% (95% CI 7–9). −1131T>C was not significantly associated with several non-lipid risk factors or LDL cholesterol, and it was modestly associated with lower HDL cholesterol (mean difference per C allele 3·5% [95% CI 2·6–4·6]; 0·053 mmol/L [0·039–0·068]), lower apolipoprotein AI (1·3% [0·3–2·3]; 0·023 g/L [0·005–0·041]), and higher apolipoprotein B (3·2% [1·3–5·1]; 0·027 g/L [0·011–0·043]). By contrast, for every C allele inherited, mean triglyceride concentration was 16·0% (95% CI 12·9–18·7), or 0·25 mmol/L (0·20–0·29), higher (p=4·4×10−24). The odds ratio for coronary heart disease was 1·18 (95% CI 1·11–1·26; p=2·6×10−7) per C allele, which was concordant with the hazard ratio of 1·10 (95% CI 1·08–1·12) per 16% higher triglyceride concentration recorded in prospective studies. −1131T>C was significantly associated with higher VLDL particle concentration (mean difference per C allele 12·2 nmol/L [95% CI 7·7–16·7]; p=9·3×10−8) and smaller HDL particle size (0·14 nm [0·08–0·20]; p=7·0×10−5), factors that could mediate the effects of triglyceride. Interpretation These data are consistent with a causal association between triglyceride-mediated pathways and coronary heart disease. Funding British Heart Foundation, UK Medical Research Council, Novartis.


PubMed | 2010

Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies.

Nadeem Sarwar; Manjinder S. Sandhu; Sally L. Ricketts; Adam S Butterworth; E Di Angelantonio; S. M. Boekholdt; Willem H. Ouwehand; Hugh Watkins; Nilesh J. Samani; Danish Saleheen; Debbie A. Lawlor; M. P. Reilly; Aroon D. Hingorani; P.J. Talmud; John Danesh

Summary Background Whether triglyceride-mediated pathways are causally relevant to coronary heart disease is uncertain. We studied a genetic variant that regulates triglyceride concentration to help judge likelihood of causality. Methods We assessed the −1131T>C (rs662799) promoter polymorphism of the apolipoprotein A5 (APOA5) gene in relation to triglyceride concentration, several other risk factors, and risk of coronary heart disease. We compared disease risk for genetically-raised triglyceride concentration (20 842 patients with coronary heart disease, 35 206 controls) with that recorded for equivalent differences in circulating triglyceride concentration in prospective studies (302 430 participants with no history of cardiovascular disease; 12 785 incident cases of coronary heart disease during 2·79 million person-years at risk). We analysed −1131T>C in 1795 people without a history of cardiovascular disease who had information about lipoprotein concentration and diameter obtained by nuclear magnetic resonance spectroscopy. Findings The minor allele frequency of −1131T>C was 8% (95% CI 7–9). −1131T>C was not significantly associated with several non-lipid risk factors or LDL cholesterol, and it was modestly associated with lower HDL cholesterol (mean difference per C allele 3·5% [95% CI 2·6–4·6]; 0·053 mmol/L [0·039–0·068]), lower apolipoprotein AI (1·3% [0·3–2·3]; 0·023 g/L [0·005–0·041]), and higher apolipoprotein B (3·2% [1·3–5·1]; 0·027 g/L [0·011–0·043]). By contrast, for every C allele inherited, mean triglyceride concentration was 16·0% (95% CI 12·9–18·7), or 0·25 mmol/L (0·20–0·29), higher (p=4·4×10−24). The odds ratio for coronary heart disease was 1·18 (95% CI 1·11–1·26; p=2·6×10−7) per C allele, which was concordant with the hazard ratio of 1·10 (95% CI 1·08–1·12) per 16% higher triglyceride concentration recorded in prospective studies. −1131T>C was significantly associated with higher VLDL particle concentration (mean difference per C allele 12·2 nmol/L [95% CI 7·7–16·7]; p=9·3×10−8) and smaller HDL particle size (0·14 nm [0·08–0·20]; p=7·0×10−5), factors that could mediate the effects of triglyceride. Interpretation These data are consistent with a causal association between triglyceride-mediated pathways and coronary heart disease. Funding British Heart Foundation, UK Medical Research Council, Novartis.


Diabetes | 2010

Common variants at 10 genomic loci influence hemoglobin A1C levels via glycemic and nonglycemic pathways

Nicole Soranzo; Serena Sanna; Eleanor Wheeler; Christian Gieger; Dörte Radke; Josée Dupuis; Nabila Bouatia-Naji; Claudia Langenberg; Inga Prokopenko; Elliot S. Stolerman; Manjinder S. Sandhu; Matthew M. Heeney; Joseph M. Devaney; Muredach P. Reilly; Sally L. Ricketts

OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels. RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c. CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c.


The Lancet | 2011

Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials

Michael V. Holmes; Paul Newcombe; Jaroslav A. Hubacek; Reecha Sofat; Sally L. Ricketts; Jackie A. Cooper; Monique M.B. Breteler; Leonelo E. Bautista; Pankaj Sharma; John C. Whittaker; Liam Smeeth; F. Gerald R. Fowkes; Ale Algra; Veronika Shmeleva; Zoltan Szolnoki; Mark Roest; Michael Linnebank; Jeppe Zacho; Michael A. Nalls; Andrew Singleton; Luigi Ferrucci; John Hardy; Bradford B. Worrall; Stephen S. Rich; Mar Matarin; Paul Norman; Leon Flicker; Osvaldo P. Almeida; Frank M. van Bockxmeer; Hiroshi Shimokata

Summary Background The MTHFR 677C→T polymorphism has been associated with raised homocysteine concentration and increased risk of stroke. A previous overview showed that the effects were greatest in regions with low dietary folate consumption, but differentiation between the effect of folate and small-study bias was difficult. A meta-analysis of randomised trials of homocysteine-lowering interventions showed no reduction in coronary heart disease events or stroke, but the trials were generally set in populations with high folate consumption. We aimed to reduce the effect of small-study bias and investigate whether folate status modifies the association between MTHFR 677C→T and stroke in a genetic analysis and meta-analysis of randomised controlled trials. Methods We established a collaboration of genetic studies consisting of 237 datasets including 59 995 individuals with data for homocysteine and 20 885 stroke events. We compared the genetic findings with a meta-analysis of 13 randomised trials of homocysteine-lowering treatments and stroke risk (45 549 individuals, 2314 stroke events, 269 transient ischaemic attacks). Findings The effect of the MTHFR 677C→T variant on homocysteine concentration was larger in low folate regions (Asia; difference between individuals with TT versus CC genotype, 3·12 μmol/L, 95% CI 2·23 to 4·01) than in areas with folate fortification (America, Australia, and New Zealand, high; 0·13 μmol/L, −0·85 to 1·11). The odds ratio (OR) for stroke was also higher in Asia (1·68, 95% CI 1·44 to 1·97) than in America, Australia, and New Zealand, high (1·03, 0·84 to 1·25). Most randomised trials took place in regions with high or increasing population folate concentrations. The summary relative risk (RR) of stroke in trials of homocysteine-lowering interventions (0·94, 95% CI 0·85 to 1·04) was similar to that predicted for the same extent of homocysteine reduction in large genetic studies in populations with similar folate status (predicted RR 1·00, 95% CI 0·90 to 1·11). Although the predicted effect of homocysteine reduction from large genetic studies in low folate regions (Asia) was larger (RR 0·78, 95% CI 0·68 to 0·90), no trial has evaluated the effect of lowering of homocysteine on stroke risk exclusively in a low folate region. Interpretation In regions with increasing levels or established policies of population folate supplementation, evidence from genetic studies and randomised trials is concordant in suggesting an absence of benefit from lowering of homocysteine for prevention of stroke. Further large-scale genetic studies of the association between MTHFR 677C→T and stroke in low folate settings are needed to distinguish effect modification by folate from small-study bias. If future randomised trials of homocysteine-lowering interventions for stroke prevention are undertaken, they should take place in regions with low folate consumption. Funding Full funding sources listed at end of paper (see Acknowledgments).


PLOS Genetics | 2009

A Genome-Wide Association Study Reveals Variants in ARL15 that Influence Adiponectin Levels

J. Brent Richards; Dawn M. Waterworth; Stephen O'Rahilly; Marie-France Hivert; Ruth J. F. Loos; John Perry; Toshiko Tanaka; Nicholas J. Timpson; Robert K. Semple; Nicole Soranzo; Kijoung Song; Nuno Rocha; Elin Grundberg; Josée Dupuis; Jose C. Florez; Claudia Langenberg; Inga Prokopenko; Richa Saxena; Robert Sladek; Yurii S. Aulchenko; David Evans; Gérard Waeber; Jeanette Erdmann; Mary-Susan Burnett; Naveed Sattar; Joseph M. Devaney; Christina Willenborg; Aroon D. Hingorani; Jaquelin C. M. Witteman; Peter Vollenweider

The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P≤5×10−8). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P≤0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2×10−19 for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9×10−8, n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5×10−6, n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2×10−3, n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.


Circulation | 2010

PLA2G7 Genotype, Lipoprotein-Associated Phospholipase A2 Activity, and Coronary Heart Disease Risk in 10 494 Cases and 15 624 Controls of European Ancestry

Juan P. Casas; Ewa Ninio; Andrie G. Panayiotou; Jutta Palmen; Jackie A. Cooper; Sally L. Ricketts; Reecha Sofat; Andrew N Nicolaides; James P. Corsetti; F. Gerry R. Fowkes; Ioanna Tzoulaki; Meena Kumari; Eric Brunner; Mika Kivimäki; Michael Marmot; Michael M. Hoffmann; Karl Winkler; Winfred März; Shu Ye; Heide A. Stirnadel; Kay-Tee Khaw; Steve E. Humphries; Manjinder S. Sandhu; Aroon D. Hingorani; Philippa J. Talmud

Background— Higher lipoprotein-associated phospholipase A2(Lp-PLA2) activity is associated with increased risk of coronary heart disease (CHD), making Lp-PLA2 a potential therapeutic target. PLA2G7 variants associated with Lp-PLA2 activity could evaluate whether this relationship is causal. Methods and Results— A meta-analysis including a total of 12 studies (5 prospective, 4 case-control, 1 case-only, and 2 cross-sectional studies; n=26 118) was undertaken to examine the association of the following: (1) Lp-PLA2 activity versus cardiovascular biomarkers and risk factors and CHD events (2 prospective studies; n=4884); (2) PLA2G7 single-nucleotide polymorphisms and Lp-PLA2 activity (3 prospective, 2 case-control, 2 cross-sectional studies; up to n=6094); and (3) PLA2G7 single-nucleotide polymorphisms and angiographic coronary artery disease (2 case-control, 1 case-only study; n=4971 cases) and CHD events (5 prospective, 2 case-control studies; n=5523). Lp-PLA2 activity correlated with several CHD risk markers. Hazard ratios for CHD events for the top versus bottom quartile of Lp-PLA2 activity were 1.61 (95% confidence interval, 1.31 to 1.99) and 1.17 (95% confidence interval, 0.91 to 1.51) after adjustment for baseline traits. Of 7 single-nucleotide polymorphisms, rs1051931 (A379V) showed the strongest association with Lp-PLA2 activity, with VV subjects having 7.2% higher activity than AAs. Genotype was not associated with risk markers, angiographic coronary disease (odds ratio, 1.03; 95% confidence interval, 0.80 to 1.32), or CHD events (odds ratio, 0.98; 95% confidence interval, 0.82 to 1.17). Conclusions— Unlike Lp-PLA2 activity, PLA2G7 variants associated with modest effects on Lp-PLA2 activity were not associated with cardiovascular risk markers, coronary atheroma, or CHD. Larger association studies, identification of single-nucleotide polymorphisms with larger effects, or randomized trials of specific Lp-PLA2 inhibitors are needed to confirm or refute a contributory role for Lp-PLA2 in CHD.


Circulation | 2010

Separating the Mechanism-Based and Off-Target Actions of Cholesteryl Ester Transfer Protein Inhibitors With CETP Gene Polymorphisms

Reecha Sofat; Aroon D. Hingorani; Liam Smeeth; Steve E. Humphries; Philippa J. Talmud; Jackie A. Cooper; Tina Shah; Manjinder S. Sandhu; Sally L. Ricketts; S. Matthijs Boekholdt; Nicholas J. Wareham; Kay-Tee Khaw; Meena Kumari; Mika Kivimäki; Michael Marmot; Folkert W. Asselbergs; Pim van der Harst; Robin P. F. Dullaart; Gerjan Navis; Dirk J. van Veldhuisen; Wiek H. van Gilst; John F. Thompson; Pamela A. McCaskie; Lyle J. Palmer; Marcello Arca; Fabiana Quagliarini; Carlo Gaudio; François Cambien; Viviane Nicaud; Odette Poirer

Background— Cholesteryl ester transfer protein (CETP) inhibitors raise high-density lipoprotein (HDL) cholesterol, but torcetrapib, the first-in-class inhibitor tested in a large outcome trial, caused an unexpected blood pressure elevation and increased cardiovascular events. Whether the hypertensive effect resulted from CETP inhibition or an off-target action of torcetrapib has been debated. We hypothesized that common single-nucleotide polymorphisms in the CETP gene could help distinguish mechanism-based from off-target actions of CETP inhibitors to inform on the validity of CETP as a therapeutic target. Methods and Results— We compared the effect of CETP single-nucleotide polymorphisms and torcetrapib treatment on lipid fractions, blood pressure, and electrolytes in up to 67 687 individuals from genetic studies and 17 911 from randomized trials. CETP single-nucleotide polymorphisms and torcetrapib treatment reduced CETP activity and had a directionally concordant effect on 8 lipid and lipoprotein traits (total, low-density lipoprotein, and HDL cholesterol; HDL2; HDL3; apolipoproteins A-I and B; and triglycerides), with the genetic effect on HDL cholesterol (0.13 mmol/L, 95% confidence interval [CI] 0.11 to 0.14 mmol/L) being consistent with that expected of a 10-mg dose of torcetrapib (0.13 mmol/L, 95% CI 0.10 to 0.15). In trials, 60 mg of torcetrapib elevated systolic and diastolic blood pressure by 4.47 mm Hg (95% CI 4.10 to 4.84 mm Hg) and 2.08 mm Hg (95% CI 1.84 to 2.31 mm Hg), respectively. However, the effect of CETP single-nucleotide polymorphisms on systolic blood pressure (0.16 mm Hg, 95% CI −0.28 to 0.60 mm Hg) and diastolic blood pressure (−0.04 mm Hg, 95% CI −0.36 to 0.28 mm Hg) was null and significantly different from that expected of 10 mg of torcetrapib. Conclusions— Discordance in the effects of CETP single-nucleotide polymorphisms and torcetrapib treatment on blood pressure despite the concordant effects on lipids indicates the hypertensive action of torcetrapib is unlikely to be due to CETP inhibition or shared by chemically dissimilar CETP inhibitors. Genetic studies could find a place in drug-development programs as a new source of randomized evidence for drug-target validation in humans.


Circulation | 2010

Genetic Variation at the Phospholipid Transfer Protein Locus Affects Its Activity and High-Density Lipoprotein Size and Is a Novel Marker of Cardiovascular Disease Susceptibility

Menno Vergeer; S. Matthijs Boekholdt; Manjinder S. Sandhu; Sally L. Ricketts; Nicholas J. Wareham; Morris J. Brown; Ulf de Faire; Karin Leander; Bruna Gigante; Maryam Kavousi; Albert Hofman; André G. Uitterlinden; Cornelia M. van Duijn; Jacqueline C. M. Witteman; J. Wouter Jukema; Eric E. Schadt; Ellen van der Schoot; John J. P. Kastelein; Kay-Tee Khaw; Robin P. F. Dullaart; Arie van Tol; Mieke D. Trip; Geesje M. Dallinga-Thie

Background— In contrast to clear associations between variants in genes participating in low-density lipoprotein metabolism and cardiovascular disease risk, such associations for high-density lipoprotein (HDL)–related genes are not well supported by recent large studies. We aimed to determine whether genetic variants at the locus encoding phospholipid transfer protein (PLTP), a protein involved in HDL remodeling, underlie altered PLTP activity, HDL particle concentration and size, and cardiovascular disease risk. Methods and Results— We assessed associations between 6 PLTP tagging single nucleotide polymorphisms and PLTP activity in 2 studies (combined n=384) and identified 2 variants that show reproducible associations with altered plasma PLTP activity. A gene score based on these variants is associated with lower hepatic PLTP transcription (P=3.2×10−18) in a third study (n=957) and with an increased number of HDL particles of smaller size (P=3.4×10−17) in a fourth study (n=3375). In a combination of 5 cardiovascular disease case-control studies (n=4658 cases and 11 459 controls), a higher gene score was associated with a lower cardiovascular disease risk (per-allele odds ratio, 0.94; 95% confidence interval, 0.90 to 0.98; P=1.2×10−3; odds ratio for highest versus lowest gene score, 0.69; 95% confidence interval, 0.55 to 0.86; P=1.0×10−3). Conclusions— A gene score based on 2 PLTP single nucleotide polymorphisms is associated with lower PLTP transcription and activity, an increased number of HDL particles, smaller HDL size, and decreased risk of cardiovascular disease. These findings indicate that PLTP is a proatherogenic entity and suggest that modulation of specific elements of HDL metabolism may offer cardiovascular benefit.


Diabetes | 2010

Detailed investigation of the role of common and low frequency WFS1 variants in type 2 diabetes risk

Katherine Fawcett; Eleanor Wheeler; Andrew P. Morris; Sally L. Ricketts; Göran Hallmans; Olov Rolandsson; Allan Daly; Jon Wasson; Alan Permutt; Andrew T. Hattersley; Benjamin Glaser; Paul W. Franks; Mark McCarthy; Nicholas J. Wareham; Manjinder S. Sandhu; Inês Barroso

OBJECTIVE Wolfram syndrome 1 (WFS1) single nucleotide polymorphisms (SNPs) are associated with risk of type 2 diabetes. In this study we aimed to refine this association and investigate the role of low-frequency WFS1 variants in type 2 diabetes risk. RESEARCH DESIGN AND METHODS For fine-mapping, we sequenced WFS1 exons, splice junctions, and conserved noncoding sequences in samples from 24 type 2 diabetic case and 68 control subjects, selected tagging SNPs, and genotyped these in 959 U.K. type 2 diabetic case and 1,386 control subjects. The same genomic regions were sequenced in samples from 1,235 type 2 diabetic case and 1,668 control subjects to compare the frequency of rarer variants between case and control subjects. RESULTS Of 31 tagging SNPs, the strongest associated was the previously untested 3′ untranslated region rs1046320 (P = 0.008); odds ratio 0.84 and P = 6.59 × 10−7 on further replication in 3,753 case and 4,198 control subjects. High correlation between rs1046320 and the original strongest SNP (rs10010131) (r2 = 0.92) meant that we could not differentiate between their effects in our samples. There was no difference in the cumulative frequency of 82 rare (minor allele frequency [MAF] <0.01) nonsynonymous variants between type 2 diabetic case and control subjects (P = 0.79). Two intermediate frequency (MAF 0.01–0.05) nonsynonymous changes also showed no statistical association with type 2 diabetes. CONCLUSIONS We identified six highly correlated SNPs that show strong and comparable associations with risk of type 2 diabetes, but further refinement of these associations will require large sample sizes (>100,000) or studies in ethnically diverse populations. Low frequency variants in WFS1 are unlikely to have a large impact on type 2 diabetes risk in white U.K. populations, highlighting the complexities of undertaking association studies with low-frequency variants identified by resequencing.


Atherosclerosis | 2010

Lack of association between common genetic variation in endothelial lipase (LIPG) and the risk for CAD and DVT

Menno Vergeer; Danny M. Cohn; S. Matthijs Boekholdt; Manjinder S. Sandhu; Hester M. Prins; Sally L. Ricketts; Nicholas J. Wareham; John J. P. Kastelein; Kay-Tee Khaw; Pieter Willem Kamphuisen; Geesje M. Dallinga-Thie

OBJECTIVES Low levels of high-density lipoprotein cholesterol (HDL-C) are a risk factor for coronary artery disease (CAD) and possibly for deep venous thrombosis (DVT). Endothelial lipase is involved in HDL-C metabolism. Common variants in the endothelial lipase gene (LIPG) have been reported to be associated with HDL-C levels and atherothrombosis, but these findings were not consistent. We determined whether five tagging single nucleotide polymorphisms (SNP) in LIPG were associated with lipid parameters, the risk of CAD and the risk of DVT. METHODS We used the prospective case-control study nested in the EPIC-Norfolk cohort (1138 CAD cases, 2237 matched controls) for the initial association study and, subsequently, the ACT study (185 patients with documented DVT, 586 patients in which DVT was ruled out) to replicate our findings regarding DVT risk. RESULTS In EPIC-Norfolk, we found that the minor allele of one SNP, rs2000813 (p.T111I), was associated with moderately higher HDL-C and apolipoprotein A-I levels, higher HDL particle number and larger HDL size. No variants were associated with CAD risk, but three variants were associated with DVT risk (odds ratios 0.60 [95%CI 0.43-0.84], 2.04 [95%CI 1.40-2.98] and 1.67 [95%CI 1.18-2.38] per minor allele for rs2000813, rs6507931 and rs2097055 respectively, p<0.005 for each). However, the association between LIPG SNPs and DVT risk could not be replicated in the ACT study. CONCLUSIONS Our data support a modest association between the LIPG rs2000813 variant and parameters of HDL metabolism, but no association between common genetic variants in LIPG and CAD or DVT risk.

Collaboration


Dive into the Sally L. Ricketts's collaboration.

Top Co-Authors

Avatar

Manjinder S. Sandhu

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Kay-Tee Khaw

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Danesh

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Reecha Sofat

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge