Salman Qasim
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Salman Qasim.
The Journal of Neuroscience | 2016
Nicole C. Swann; Coralie de Hemptinne; Svjetlana Miocinovic; Salman Qasim; Sarah S. Wang; Nathan Ziman; Jill L. Ostrem; Marta San Luciano; Nicholas B. Galifianakis; Philip A. Starr
Hyperkinetic states are common in human movement disorders, but their neural basis remains uncertain. One such condition is dyskinesia, a serious adverse effect of medical and surgical treatment for Parkinsons disease (PD). To study this, we used a novel, totally implanted, bidirectional neural interface to obtain multisite long-term recordings. We focus our analysis on two patients with PD who experienced frequent dyskinesia and studied them both at rest and during voluntary movement. We show that dyskinesia is associated with a narrowband gamma oscillation in motor cortex between 60 and 90 Hz, a similar, though weaker, oscillation in subthalamic nucleus, and strong phase coherence between the two. Dyskinesia-related oscillations are minimally affected by voluntary movement. When dyskinesia persists during therapeutic deep brain stimulation (DBS), the peak frequency of this signal shifts to half the stimulation frequency. These findings suggest a circuit-level mechanism for the generation of dyskinesia as well as a promising control signal for closed-loop DBS. SIGNIFICANCE STATEMENT Oscillations in brain networks link functionally related brain areas to accomplish thought and action, but this mechanism may be altered or exaggerated by disease states. Invasive recording using implanted electrodes provides a degree of spatial and temporal resolution that is ideal for analysis of network oscillations. Here we used a novel, totally implanted, bidirectional neural interface for chronic multisite brain recordings in humans with Parkinsons disease. We characterized an oscillation between cortex and subcortical modulators that is associated with a serious adverse effect of therapy for Parkinsons disease: dyskinesia. The work shows how a perturbation in oscillatory dynamics might lead to a state of excessive movement and also suggests a possible biomarker for feedback-controlled neurostimulation to treat hyperkinetic disorders.
The Journal of Neuroscience | 2015
J. Ryan Morehead; Salman Qasim; Matthew J. Crossley; Richard B. Ivry
Sensorimotor adaptation has traditionally been viewed as a purely error-based process. There is, however, growing appreciation for the idea that performance changes in these tasks can arise from the interplay of error-based adaptation with other learning processes. The challenge is to specify constraints on these different processes, elucidating their respective contributions to performance, as well as the manner in which they interact. We address this question by exploring constraints on savings, the phenomenon in which people show faster performance gains when the same learning task is repeated. In a series of five experiments, we demonstrate that error-based learning associated with sensorimotor adaptation does not contribute to savings. Instead, savings reflects improvements in action selection, rather than motor execution. SIGNIFICANCE STATEMENT Savings is the phenomenon in which people show faster relearning of a previously forgotten memory. In the motor learning domain, this phenomenon has been a puzzle for learning models that operate exclusively on error-based learning processes. We demonstrate, in a series of experiments, that savings selectively reflects improvements in action selection: Participants are more adept in invoking an appropriate aiming strategy when presented with a previously experienced perturbation. Indeed, improvements in action selection appear to be the sole source of savings in visuomotor adaptation tasks. We observe no evidence of savings in implicit error-based adaptation.
Neurobiology of Disease | 2016
Doris D. Wang; Coralie de Hemptinne; Svjetlana Miocinovic; Salman Qasim; Andrew Miller; Jill L. Ostrem; Nicholas B. Galifianakis; Marta San Luciano; Philip A. Starr
Local field potentials (LFP) recorded from the subthalamic nucleus in patients with Parkinsons disease (PD) demonstrate prominent oscillations in the beta (13-30 Hz) frequency range, and reduction of beta band spectral power by levodopa and deep brain stimulation (DBS) is correlated with motor symptom improvement. Several features of beta activity have been theorized to be specific biomarkers of the parkinsonian state, though these have rarely been studied in non-parkinsonian conditions. To compare resting state LFP features in PD and isolated dystonia and evaluate disease-specific biomarkers, we recorded subthalamic LFPs from 28 akinetic-rigid PD and 12 isolated dystonia patients during awake DBS implantation. Spectral power and phase-amplitude coupling characteristics were analyzed. In 26/28 PD and 11/12 isolated dystonia patients, the LFP power spectrum had a peak in the beta frequency range, with similar amplitudes between groups. Resting state power did not differ between groups in the theta (5-8 Hz), alpha (8-12 Hz), beta (13-30 Hz), broadband gamma (50-200 Hz), or high frequency oscillation (HFO, 250-350 Hz) bands. Analysis of phase-amplitude coupling between low frequency phase and HFO amplitude revealed significant interactions in 19/28 PD and 6/12 dystonia recordings without significant differences in maximal coupling or preferred phase. Two features of subthalamic LFPs that have been proposed as specific parkinsonian biomarkers, beta power and coupling of beta phase to HFO amplitude, were also present in isolated dystonia, including focal dystonias. This casts doubt on the utility of these metrics as disease-specific diagnostic biomarkers.
Neurobiology of Disease | 2016
Salman Qasim; Coralie de Hemptinne; Nicole C. Swann; Svjetlana Miocinovic; Jill L. Ostrem; Philip A. Starr
The pathophysiology of rest tremor in Parkinsons disease (PD) is not well understood, and its severity does not correlate with the severity of other cardinal signs of PD. We hypothesized that tremor-related oscillatory activity in the basal-ganglia-thalamocortical loop might serve as a compensatory mechanism for the excessive beta band synchronization associated with the parkinsonian state. We recorded electrocorticography (ECoG) from the sensorimotor cortex and local field potentials (LFP) from the subthalamic nucleus (STN) in patients undergoing lead implantation for deep brain stimulation (DBS). We analyzed differences in measures of network synchronization during epochs of spontaneous rest tremor, versus epochs without rest tremor, occurring in the same subjects. The presence of tremor was associated with reduced beta power in the cortex and STN. Cortico-cortical coherence and phase-amplitude coupling (PAC) decreased during rest tremor, as did basal ganglia-cortical coherence in the same frequency band. Cortical broadband gamma power was not increased by tremor onset, in contrast to the movement-related gamma increase typically observed at the onset of voluntary movement. These findings suggest that the cortical representation of rest tremor is distinct from that of voluntary movement, and support a model in which tremor acts to decrease beta band synchronization within the basal ganglia-cortical loop.
Frontiers in Human Neuroscience | 2015
Nathan C. Rowland; Coralie de Hemptinne; Nicole C. Swann; Salman Qasim; Svjetlana Miocinovic; Jill L. Ostrem; Robert T. Knight; Philip A. Starr
In Parkinsons disease patients in the OFF medication state, basal ganglia local field potentials exhibit changes in beta and gamma oscillations that correlate with reduced voluntary movement, manifested as rigidity and akinesia. However, magnetoencephalography and low-resolution electrocorticography (ECoG) studies in Parkinsons patients suggest that changes in sensorimotor cortical oscillations differ from those of the basal ganglia. To more clearly define the role of sensorimotor cortex oscillatory activity in Parkinsons, we performed intraoperative, high-resolution (4 mm spacing) ECoG recordings in 10 Parkinsons patients (2 females, ages 47–72) undergoing deep brain stimulation (DBS) lead placement in the awake, OFF medication state. We analyzed ECoG potentials during a computer-controlled reaching task designed to separate movement preparation from movement execution and compared findings to similar invasive recordings in eight patients with essential tremor (3 females, ages 59–78), a condition not associated with rigidity or akinesia. We show that (1) cortical beta spectral power at rest does not differ between Parkinsons and essential tremor patients (p = 0.85), (2) early motor preparation in Parkinsons patients in the OFF medication state is associated with a larger beta desynchronization compared to patients with essential tremor (p = 0.0061), and (3) cortical broadband gamma power is elevated in Parkinsons patients compared to essential tremor patients during both rest and task recordings (p = 0.004). Our findings suggest an oscillatory profile in sensorimotor cortex of Parkinsons patients that, in contrast to the basal ganglia, may act to promote movement to oppose the anti-kinetic bias of the dopamine-depleted state.
JAMA Neurology | 2015
Svjetlana Miocinovic; Coralie de Hemptinne; Salman Qasim; Jill L. Ostrem; Philip A. Starr
IMPORTANCE Isolated dystonia and Parkinson disease (PD) are disorders of the basal gangliothalamocortical network. They have largely distinct clinical profiles, but both disorders respond to deep brain stimulation (DBS) in the same subcortical targets using similar stimulation paradigms, suggesting pathophysiologic overlap. We hypothesized that, similar to PD, isolated dystonia is associated with elevated cortical neuronal synchronization. OBJECTIVE To investigate the electrophysiologic characteristics of the sensorimotor cortex arm-related area using a temporary subdural electrode strip in patients with isolated dystonia and PD undergoing DBS implantation in the awake state. DESIGN, SETTING, AND PARTICIPANTS An observational study recruited patients scheduled for DBS at the University of California, San Francisco and the San Francisco Veterans Affairs Medical Center. Data were collected from May 1, 2008, through April 1, 2015. Findings are reported for 22 patients with isolated cervical or segmental dystonia (8 with [DYST-ARM] and 14 without [DYST] arm symptoms) and 14 patients with akinetic rigid PD. Data were analyzed from November 1, 2014, through May 1, 2015. MAIN OUTCOMES AND MEASURES Cortical local field potentials, power spectral density, and phase-amplitude coupling (PAC). RESULTS Among our 3 groups that together included 36 patients, cortical PAC was present in primary motor and premotor arm-related areas for all groups, but the DYST group was less likely to exhibit increased PAC (P = .008). Similar to what has been shown for patients with PD, subthalamic DBS reversibly decreased PAC in a subset of patients with dystonia who were studied before and during intraoperative test stimulation (n = 4). At rest, broadband gamma (50-200 Hz) power in the primary motor cortex was greater in the DYST-ARM and PD groups compared with the DYST group, whereas alpha (8-13 Hz) and beta (13-30 Hz) power was comparable in all 3 groups. During movement, the DYST-ARM group had impaired beta and low gamma desynchronization in the primary motor cortex. CONCLUSIONS AND RELEVANCE Isolated dystonia and PD have physiologic overlap with respect to high levels of motor cortex synchronization and reduction of cortical synchronization by subthalamic DBS, providing an explanation for their similar therapeutic response to basal ganglia stimulation.
Journal of Neurosurgery | 2017
Nicole C. Swann; Coralie de Hemptinne; Svjetlana Miocinovic; Salman Qasim; Jill L. Ostrem; Nicholas B. Galifianakis; Marta San Luciano; Sarah S. Wang; Nathan Ziman; Robin Taylor; Philip A. Starr
OBJECTIVE Dysfunction of distributed neural networks underlies many brain disorders. The development of neuromodulation therapies depends on a better understanding of these networks. Invasive human brain recordings have a favorable temporal and spatial resolution for the analysis of network phenomena but have generally been limited to acute intraoperative recording or short-term recording through temporarily externalized leads. Here, the authors describe their initial experience with an investigational, first-generation, totally implantable, bidirectional neural interface that allows both continuous therapeutic stimulation and recording of field potentials at multiple sites in a neural network. METHODS Under a physician-sponsored US Food and Drug Administration investigational device exemption, 5 patients with Parkinsons disease were implanted with the Activa PC+S system (Medtronic Inc.). The device was attached to a quadripolar lead placed in the subdural space over motor cortex, for electrocorticography potential recordings, and to a quadripolar lead in the subthalamic nucleus (STN), for both therapeutic stimulation and recording of local field potentials. Recordings from the brain of each patient were performed at multiple time points over a 1-year period. RESULTS There were no serious surgical complications or interruptions in deep brain stimulation therapy. Signals in both the cortex and the STN were relatively stable over time, despite a gradual increase in electrode impedance. Canonical movement-related changes in specific frequency bands in the motor cortex were identified in most but not all recordings. CONCLUSIONS The acquisition of chronic multisite field potentials in humans is feasible. The device performance characteristics described here may inform the design of the next generation of totally implantable neural interfaces. This research tool provides a platform for translating discoveries in brain network dynamics to improved neurostimulation paradigms. Clinical trial registration no.: NCT01934296 (clinicaltrials.gov).
Stereotactic and Functional Neurosurgery | 2016
Derek G. Southwell; Jared Narvid; Alastair J. Martin; Salman Qasim; Philip A. Starr; Paul S. Larson
Background: Interventional magnetic resonance imaging (iMRI) allows deep brain stimulator lead placement under general anesthesia. While the accuracy of lead targeting has been described for iMRI systems utilizing 1.5-tesla magnets, a similar assessment of 3-tesla iMRI procedures has not been performed. Objective: To compare targeting accuracy, the number of lead targeting attempts, and surgical duration between procedures performed on 1.5- and 3-tesla iMRI systems. Methods: Radial targeting error, the number of targeting attempts, and procedure duration were compared between surgeries performed on 1.5- and 3-tesla iMRI systems (SmartFrame and ClearPoint systems). Results: During the first year of operation of each system, 26 consecutive leads were implanted using the 1.5-tesla system, and 23 consecutive leads were implanted using the 3-tesla system. There was no significant difference in radial error (Mann-Whitney test, p = 0.26), number of lead placements that required multiple targeting attempts (Fishers exact test, p = 0.59), or bilateral procedure durations between surgeries performed with the two systems (p = 0.15). Conclusions: Accurate DBS lead targeting can be achieved with iMRI systems utilizing either 1.5- or 3-tesla magnets. The use of a 3-tesla magnet, however, offers improved visualization of the target structures and allows comparable accuracy and efficiency of placement at the selected targets.
Neuron | 2016
Salman Qasim; Joshua Jacobs
The hippocampus exhibits theta oscillations when animals navigate. Vass et al. (2016) discovered that theta oscillations are also present when humans are moved through a virtual environment without sensory feedback, indicating that theta oscillations have a general role in spatial cognition beyond sensorimotor processing.
eLife | 2018
Andrew J. Watrous; Jonathan F. Miller; Salman Qasim; Itzhak Fried; Joshua Jacobs
We previously demonstrated that the phase of oscillations modulates neural activity representing categorical information using human intracranial recordings and high-frequency activity from local field potentials (Watrous et al., 2015b). We extend these findings here using human single-neuron recordings during a virtual navigation task. We identify neurons in the medial temporal lobe with firing-rate modulations for specific navigational goals, as well as for navigational planning and goal arrival. Going beyond this work, using a novel oscillation detection algorithm, we identify phase-locked neural firing that encodes information about a person’s prospective navigational goal in the absence of firing rate changes. These results provide evidence for navigational planning and contextual accounts of human MTL function at the single-neuron level. More generally, our findings identify phase-coded neuronal firing as a component of the human neural code.