Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Salman Tariq is active.

Publication


Featured researches published by Salman Tariq.


Asia-pacific Journal of Atmospheric Sciences | 2014

A study of aerosol properties over Lahore (Pakistan) by using AERONET data

Muhammad Ali; Salman Tariq; Khalid Mahmood; Asim Daud; Adila Batool; Zia-ul-Haq

It is well established that aerosols affect the climate in a variety of ways. In order to understand these effects, we require an insight into the properties of aerosols. In this paper we present a study of aerosol properties such as aerosol optical depth (AOD), single scattering albedo (SSA) and aerosol radiative forcing (ARF) over mega city of Lahore (Pakistan). The data from Aerosol Robotic Network (AERONET) have been used for the period December 2009 to October 2011. The seasonal average values of AOD, asymmetry parameter (ASY) and volume size distribution in coarse mode were observed to be highest in summer. On the other hand, the average values of Angstrom exponent (AE) and imaginary part of refractive index (RI) were found to be maximum in winter. The average value of real part of RI was found to be higher in spring than in all other seasons. The SSA exhibited an increasing trend with wavelength in the range 440 nm–1020 nm in spring, summer and fall indicating the dominance of coarse particles (usually dust). However, a decreasing trend was found in winter in the range 675 nm–1020 nm pointing towards the dominance of biomass and urban/industrial aerosols. As far as aerosol radiative forcing (ARF) is concerned, we have found that during the spring season ARF was lowest at the surface of Earth and highest at top of the atmosphere (TOA). This indicates that the atmosphere was warmer in spring than in all the remaining seasons.


Atmospheric Pollution Research | 2015

Spatio–temporal distribution of absorbing aerosols over Pakistan retrieved from OMI onboard Aura satellite

Salman Tariq; Muhammad Ali

Abstract The observations of aerosol index (AI) deduced from Ozone Monitoring Instrument (OMI) with spatial resolution of 0.25°x0.25° have been analyzed over Pakistan from December 2004 to November 2008. Significant spatio–temporal variabilities in AI values were observed with higher values in southern parts and lower values in northern parts of Pakistan. The mean annual AI in Southern and Northern Pakistan have been found to be 1.220±0.250 and 1.088±0.280, respectively with an overall mean of 1.155±0.257 over the entire country. The monthly spatially averaged values of AI show a clear maximum in the month of May (1.539±0.499), one of the two months having highest dust storm activity in the region, and minimum value in the month of December (0.851±0.134), having lowest dust storm activity. We have also examined the effect of precipitation on AI values and have found that inverse correlation exists between AI and accumulated precipitation, particularly in the months of July, August and September with corresponding R2 values of 0.24, 0.25 and 0.33 respectively.


Advances in Meteorology | 2015

Tropospheric NO2 Trends over South Asia during the Last Decade (2004–2014) Using OMI Data

Zia ul-Haq; Salman Tariq; Muhammad Ali

The focus of this study is to assess spatiotemporal variability of tropospheric NO2 over South Asia using data from spaceborne OMI during the past decade (2004–2015). We find an average value of NO2 1.0 ± 0.05 × 1015 molec/cm2 and a significant decadal increase of 14%. The elevating NO2 pollution over the region is linked to rise in motor vehicles and industrial and agricultural activities and increase in biomass fuel usage. The observed seasonality of NO2 is associated with change in meteorological conditions and seasonal cycles of anthropogenic emissions. OMI data reveal a seasonal peak in spring followed by winter largely linked to metrological conditions and anthropogenic emissions from crop residue and biomass burning for heating purpose, and low concentration in summer is mostly attributed to meteorological conditions. Significant increase, up to 42%, in NO2 concentrations over northwestern IGB, is observed connected to large scale postmonsoon crop residue events of 2010 and 2012. It is seen that NO2 is mounting over all the hotspot locations and most of the cities. Dhaka shows the highest increase of 77% followed by Islamabad (69%), Kabul (68%), Korba (64%), Bardhaman (47%), and Lahore (40%). On the contrary, DG Khan has shown negative trend of −11%.


Asia-pacific Journal of Atmospheric Sciences | 2016

Satellite and ground-based remote sensing of aerosols during intense haze event of October 2013 over lahore, Pakistan

Salman Tariq; ul-Haq Zia; Muhammad Ali

Due to increase in population and economic development, the mega-cities are facing increased haze events which are causing important effects on the regional environment and climate. In order to understand these effects, we require an in-depth knowledge of optical and physical properties of aerosols in intense haze conditions. In this paper an effort has been made to analyze the microphysical and optical properties of aerosols during intense haze event over mega-city of Lahore by using remote sensing data obtained from satellites (Terra/Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)) and ground based instrument (AErosol RObotic NETwork (AERONET)) during 6-14 October 2013. The instantaneous highest value of Aerosol Optical Depth (AOD) is observed to be 3.70 on 9 October 2013 followed by 3.12 on 8 October 2013. The primary cause of such high values is large scale crop residue burning and urban-industrial emissions in the study region. AERONET observations show daily mean AOD of 2.36 which is eight times higher than the observed values on normal day. The observed fine mode volume concentration is more than 1.5 times greater than the coarse mode volume concentration on the high aerosol burden day. We also find high values (~0.95) of Single Scattering Albedo (SSA) on 9 October 2013. Scatter-plot between AOD (500 nm) and Angstrom exponent (440-870 nm) reveals that biomass burning/urban-industrial aerosols are the dominant aerosol type on the heavy aerosol loading day over Lahore. MODIS fire activity image suggests that the areas in the southeast of Lahore across the border with India are dominated by biomass burning activities. A Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model backward trajectory showed that the winds at 1000 m above the ground are responsible for transport from southeast region of biomass burning to Lahore. CALIPSO derived sub-types of aerosols with vertical profile taken on 10 October 2013 segregates the wide spread aerosol burden as smoke, polluted continental and dust aerosols.


Journal of remote sensing | 2015

Satellite remote sensing of total ozone column TOC over Pakistan and neighbouring regions

Zia ul-Haq; Salman Tariq; Asim Daud Rana; Muhammad Ali; Khalid Mahmood; Parvez Shahid

Total ozone column (TOC) obtained from the Ozone Monitoring Instrument (OMI) on board the Aura satellite was utilized to examine the spatio-temporal distribution of atmospheric ozone over Pakistan and adjoining regions of Afghanistan, India, and Iran for October 2004 to March 2014. This region has not yet been evaluated in greater detail. A yearly spatial averaged value of 278 ± 2 DU was found over the region. A decadal increase of 1.3% in TOC value over study region was observed for the first time. Large spatial and temporal variability of TOC was found over the study region. Elevated ozone columns were observed over the regions with high NO2 and CO concentrations. Analysis indicated that Srinagar city has the highest averaged value of 290 ± 3 DU whereas Jodhpur city showed the highest increasing trend of 1.9% per decade. A monthly averaged maximum value of 289 ± 8 DU and a minimum of 264 ± 5 DU were found during April and November, respectively, over the region. January showed a decreasing trend of −0.8% and February exhibited the highest increasing trend of 5.1% per decade. Forward trajectory analysis showed the possibility of ozone transport from eastern parts of the study region towards the Indian Ocean (Bay of Bengal) through the subtropical jet stream creating low values at higher meridians in October. TOC data deduced from OMI and the Atmospheric Infrared Sounder were compared to check the level of correlation and the results showed significant correlation (r = 0.75) and an acceptable average relative difference of 4.2%.


Journal of Earth System Science | 2016

Emission quantification of refrigerant CFCs, HCFCs and HFCs in megacity Lahore (Pakistan) and contributed ODPs and GWPs

Zia ul-Haq; Muhammad Ali; Syeda Adila Batool; Salman Tariq; Zarmina Qayyum

An integrated assessment of emissions of some important refrigerant ozone depleting substances (ODSs) (CFC-11, CFC-12, HCFC-141b and HFC-134a) and their contributed ozone depletion potentials (ODPs) and global warming potentials (GWPs) have been made in the megacity Lahore (Pakistan) for the period from 2005 to 2013. During the production of 6.488 million refrigerator units, the cumulative estimated emissions of CFC-11, CFC-12, HCFC-141b and HFC-134a were 129.7, 6.8, 1257 and 104 mega grams (1 Mg = 106 grams). The estimated GWP (CO2-eq) and ODP (CFC 11-eq) associated with production phase emissions of these four gases were 616.07, 73.52, 910.96, and 87.36 kilotonnes, and 129.7, 6.8, 139.4, and 0 tonnes, respectively. ODP of HFC-134a is considered to be zero. In addition, the repair and maintenance of 81.2 thousand units resulted in 10.8 Mg emissions of CFC-12 with 10.8 tonnes ODP(CFC 11-eq) and 117,802 tonnes GWP (CO2-eq) that were higher than the HFC-134a emissions recorded at 4.3 Mg causing 4563 tonnes GWP(CO2-eq). A decrease in ODP (CFC 11-eq) and GWP (CO2-eq) at the rate of −8.3% and −8.2% per year is observed to be contributed by all the selected ODSs during the study period.


Journal of remote sensing | 2016

Sulphur dioxide loadings over megacity Lahore Pakistan and adjoining region of Indo-Gangetic Basin

Zia ul-Haq; Salman Tariq; Muhammad Ali; Khalid Mahmood; Asim Daud Rana

ABSTRACT This article presents spatial and temporal variations of planetary boundary layer (PBL) sulphur dioxide (SO2) over megacity Lahore and adjoining region, a typical representative area in the Indo-Gangetic Basin (IGB) largely influenced by transported volcanic SO2 from Africa, Middle East, and southern Europe, by using data retrieved from satellite-based Ozone Monitoring Instrument (OMI) during October 2004–September 2015. We find a positive trend of 2.4% per year (slope 0.01 ± 0.005 with y-intercept 0.35 ± 0.03 Dobson Unit (DU), correlation coefficient r = 0.55 and 2-tailed p-value at 0.1) of OMI-SO2 column with the average value of 0.4 ± 0.05 DU. Strong seasonality of OMI-SO2 column is observed over the region linked with local meteorology, patterns of anthropogenic emissions, crop residue burning, and vegetation cover. There exists a seasonal high value in winter 0.56 ± 0.24 DU with a peak in December 0.67 ± 0.26 DU. The seasonal lowest value is observed to be 0.29 ± 0.11 DU in wet summer with minimum value in July 0.25 ± 0.06 DU. High growth rates of OMI-SO2 column over the study region have been observed in January, June, October, and December ranging from 5.7% to 11.6% per year. Satellite data show elevated OMI-SO2 columns in 2007, 2008, 2011, and 2012 largely contributed by trans-boundary volcanic SO2. A detailed analysis of volcanic SO2 transported from Africa and Middle East (Jabal Al-Tair, Dalaffilla, and Nabro volcanoes) over the study area is presented. Air mass trajectories suggest the presence of long-range transported volcanic SO2 at high altitude levels over Lahore and IGB region during the volcanic episodes. The SO2 enhancements in PBL during winter season are generally due to significant vertical downdraft of high-altitude volcanic SO2. For the first time, we present significant influence of volcanic SO2 from southern Europe (Mt. Etna volcano) reaching over the study area. Daily mean OMI-SO2 levels up to 21.4, 10.0, 5.6, and 2.4 DU have been noticed due to the eruptions from Dalaffilla, Mt. Etna, Nabro, and Jabal Al-Tair volcanoes, respectively.


International Journal of Remote Sensing | 2017

Satellite-sensed tropospheric NO2 patterns and anomalies over Indus, Ganges, Brahmaputra, and Meghna river basins

Zia ul-Haq; Salman Tariq; Muhammad Ali; Asim Daud Rana; Khalid Mahmood

ABSTRACT This study presents trends, seasonality, hot spots, and anomalies of tropospheric NO2 pollution over four basins of Indus, Ganges, Brahmaputra, and Meghna rivers in South Asia using observations from Ozone Monitoring Instrument (OMI) on-board Aura satellite during 2004–2015. For the first time this area, a highly populated and industrialized region with significant emissions of air pollutants, has been discussed collectively. OMI data reveal significantly elevated NO2 column over the region averaged at (1.9 ± 0.1) × 1015 molecules cm–2 (average ± standard deviation of observations) with an increase of 21.12% (slope (0.036 ± 0.004) × 1015 molecules cm–2, y-intercept (1.705 ± 0.024) × 1015 molecules cm–2, R2 = 0.92) during the study period. According to MACCity anthropogenic emissions inventory transportation, energy, residential, and industrial sectors are the major contributors of high NOx emissions. NO2 pollution hot spots are identified and their tendencies have been discussed. The hot spots of megacities Lahore (Pakistan) and Dhaka (Bangladesh) are found to be strengthening and expanding over the time. Eastern Ganges Basin shows the highest NO2 concentration at (2.63 ± 0.22) × 1015 molecules cm–2 and growth rate of 3.22% per year mainly linked to power generation, fossil fuel extraction, mining activities, and biomass burning. NO2 over Indus–Ganges–Brahmaputra–Meghna Basin exhibits seasonal maximum in winter and minimum in monsoon. The highest seasonality is found over Meghna Basin due to large variations in meteorological conditions and large-scale crop-residue burning. Some anomalies in NO2 levels have been detected linked to intense crop-residue burning events. During these anomalies, exceptionally high levels of daily NO2 reaching up to 76.23 × 1015 molecules cm–2 have been observed over some places in Indus and Meghna Basins.


Archive | 2018

Satellite Remote Sensing of Aerosols and Gaseous Pollution over Pakistan

Salman Tariq; Zia ul-Haq

The trace gases–aerosols–climate interaction is an important subject regarding climate change, air quality studies, and modeling. This study focuses on the spatiotemporal variability, trends, and seasonality of aerosols and important trace gases such as NO2, CH4, O3, and CO over Pakistan using satellite remote sensing. In the present work, to assess the total aerosol burden, we have analyzed the Aqua-MODIS derived deep blue aerosol optical depth (AOD) at 550 nm for the period July 2002 to June 2015. We have also compared AOD from Aqua with that of Terra and MISR. High correlation (R = 0.832) was observed between Aqua-AOD and Terra-AOD while relatively low correlation (0.666) was found between Aqua-AOD and MISR-AOD. The AOD starts to increase from February and becomes maximum (0.55) in July and then decreases afterwards. We have also discussed seasonal and annual mean AOD derived from Aqua-MODIS over six megacities of Pakistan. Annual mean value of tropospheric NO2 column derived from OMI (Ozone Monitoring Instrument) is found to be 1.187 ± 0.018 × 1015 molecules/cm2 during 2005–2015. NO2 column exhibits two peaks, i.e., primary peak in June (1.325 ± 0.079 × 1015 molecules/cm2) and secondary peak in December (1.258 ± 0.099 × 1015 molecules/cm2). Atmospheric Infrared Sounder (AIRS) observations reveal an annual averaged value of CO to be 123.165 ± 6.67 (ppbv). AIRS data show large spatial and temporal variations of lower-tropospheric O3 retrieved at 850 hPa. Yearly time and space averaged value of O3 is 42.27 ± 0.35 ppbv with increasing trend of 0.17% per year. SCIAMACHY data show that total column of CH4 is elevating with the rate of 0.41% per year with an annual mean value of 1787 ± 22 ppbv during the study period.


International Journal of Remote Sensing | 2018

Comparison of total ozone column observations from space-borne Ozone Monitoring Instrument with ground-based Dobson Ozone Spectrophotometer measurements at an urban location in Indo-Gangetic Basin

Zia ul-Haq; Zertasha Ramzan; Salman Tariq; Syeda Adila Batool; Muhammad Ali; Javed Sami

ABSTRACT This article presents a comparison analysis of OMIT (Ozone Monitoring Instrument retrieved overpass total ozone column (TOC)), and DOST (Dobson Ozone Spectrophotometer observed TOC) over Delhi during a period from October 2004 to June 2011. Megacity Delhi, located in Indo-Gangetic Basin, is an important site for comparison of ground-based and satellite retrieved TOCs due to significant anthropogenic emissions of ozone precursors, large shift in seasons, and large-scale crop residue burning in the region. DOST and OMIT data show an overall bias of 3.07% and significant correlation with coefficient of determination R2 = 0.73. Large seasonal fluctuations in the biases and correlations have been observed ranging from 2.46% (winter) to 3.82% (spring), and R2 = 0.84 (winter) to R2 = 0.09 (summer), respectively. The large biases are attributed to changes in temperature, cloud cover, pollutants emissions from urban area, and crop-residue burning events. We also find notable variations in correlations between the datasets due to the varying burden of absorbing aerosols from open field crop-residue burning. The R2 has changed from 0.67 (for aerosol optical depth, AOD 1.5–3.5) to 0.77 (for AOD 0–0.99). The dependence of the bias on solar zenith angle, cloud fraction, and satellite distance is also discussed. A simple linear regression analysis is applied to check the linkage between DOST and OMIT. The influence of atmospheric air temperature and relative humidity on OMIT at different pressure levels between 1000 and 20 hPa has been discussed.

Collaboration


Dive into the Salman Tariq's collaboration.

Top Co-Authors

Avatar

Muhammad Ali

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar

Zia ul-Haq

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar

Khalid Mahmood

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar

Asim Daud Rana

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adila Batool

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zarmina Qayyum

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar

Asim Daud

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar

Fiza Faizi

University of the Punjab

View shared research outputs
Researchain Logo
Decentralizing Knowledge