Syeda Adila Batool
University of the Punjab
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Syeda Adila Batool.
Waste Management | 2009
Syeda Adila Batool; Muhammad Nawaz Ch
This study deals with generation, composition, collection, transportation, and disposal, as well as the present cost of the waste management on the basis of 60% collection of the total waste and the cost of proposed improved system of management on the basis of 100% waste collection using the IWM-2 LCI model. A GIS map of Data Ganj Bakhsh Town (DGBT) of Lahore City District showing communal storage facilities is also provided. DGBT has a population of 1,624,169 living in 232,024 dwellings. The total waste generated per year is 500,000 tons, or 0.84/kg/cap/day. Presently 60% of the MSW is collected and disposed in open dumps, while 40% is not collected and lies along roadsides, streets railway lines, depressions, vacant plots, drains, storm drains and open sewers. In DGBT, 129 containers of 5-m(3) capacity, 120 containers of 10-m(3) capacity and 380 skips of 2.5-m(3) capacity are placed for waste collection. The overall collection and disposal cost of the MSW of DGBT is
Waste Management | 2009
Syeda Adila Batool; Muhammad Nawaz Chuadhry
3,177,900/yr, which is
Journal of Earth System Science | 2016
Zia ul-Haq; Muhammad Ali; Syeda Adila Batool; Salman Tariq; Zarmina Qayyum
10.29/ton. Modeling was conducted using the IWM-2 model for improved collection and disposal on the basis of 100% service, compared to the current 60% service. The modelled cost is
International Journal of Sustainable Development and World Ecology | 2014
Farrukh Hussain; Muhammad Nawaz Chaudhry; Syeda Adila Batool
8.3/per ton, which is 20% less than the present cost, but the overall cost of 100% collection and disposal increases to
Waste Management | 2016
Khalid Mahmood; Syeda Adila Batool; Muhammad Nawaz Chaudhry
4,155,737/yr.
Waste Management & Research | 2013
Muhammad Noman; Syeda Adila Batool; Muhammad Nawaz Chaudhary
The contribution of existing municipal solid waste management to emission of greenhouse gases and the alternative scenarios to reduce emissions were analyzed for Data Ganj Bukhsh Town (DGBT) in Lahore, Pakistan using the life cycle assessment methodology. DGBT has a population of 1,624,169 people living in 232,024 dwellings. Total waste generated is 500,000 tons per year with an average per capita rate of 0.84kg per day. Alternative scenarios were developed and evaluated according to the environmental, economic, and social atmosphere of the study area. Solid waste management options considered include the collection and transportation of waste, collection of recyclables with single and mixed material bank container systems (SMBCS, MMBCS), material recovery facilities (MRF), composting, biogasification and landfilling. A life cycle inventory (LCI) of the six scenarios along with the baseline scenario was completed; this helped to quantify the CO2 equivalents, emitted and avoided, for energy consumption, production, fuel consumption, and methane (CH4) emissions. LCI results showed that the contribution of the baseline scenario to the global warming potential as CO2 equivalents was a maximum of 838,116 tons. The sixth scenario had a maximum reduction of GHG emissions in terms of CO2 equivalents of -33,773 tons, but the most workable scenario for the current situation in the study area is scenario 5. It saves 25% in CO2 equivalents compared to the baseline scenario.
Archives of Environmental Protection | 2017
Khalid Mahmood; Syeda Adila Batool; Muhammad Nawaz Chaudhary; Zia ul-Haq
An integrated assessment of emissions of some important refrigerant ozone depleting substances (ODSs) (CFC-11, CFC-12, HCFC-141b and HFC-134a) and their contributed ozone depletion potentials (ODPs) and global warming potentials (GWPs) have been made in the megacity Lahore (Pakistan) for the period from 2005 to 2013. During the production of 6.488 million refrigerator units, the cumulative estimated emissions of CFC-11, CFC-12, HCFC-141b and HFC-134a were 129.7, 6.8, 1257 and 104 mega grams (1 Mg = 106 grams). The estimated GWP (CO2-eq) and ODP (CFC 11-eq) associated with production phase emissions of these four gases were 616.07, 73.52, 910.96, and 87.36 kilotonnes, and 129.7, 6.8, 139.4, and 0 tonnes, respectively. ODP of HFC-134a is considered to be zero. In addition, the repair and maintenance of 81.2 thousand units resulted in 10.8 Mg emissions of CFC-12 with 10.8 tonnes ODP(CFC 11-eq) and 117,802 tonnes GWP (CO2-eq) that were higher than the HFC-134a emissions recorded at 4.3 Mg causing 4563 tonnes GWP(CO2-eq). A decrease in ODP (CFC 11-eq) and GWP (CO2-eq) at the rate of −8.3% and −8.2% per year is observed to be contributed by all the selected ODSs during the study period.
International Journal of Remote Sensing | 2018
Zia ul-Haq; Zertasha Ramzan; Salman Tariq; Syeda Adila Batool; Muhammad Ali; Javed Sami
Municipal solid waste management was studied for 1 year in a representative urban area of Lahore city for environmental sustainability. The effects of financial status of the household and the seasonal variations on generation rate and compositions of municipal solid waste (MSW) were determined. MSW generation rate and the economic status of the households were positively correlated (p < 0.05). Seasonal variations observed were significant only for organics (p = 0.001), plastics (p = 0.008) and food waste fractions (p = 0.009) in MSW. Response surface regression model developed and analysed by Minitab-15® showed that the interaction of season and different economic zones of the town on the MSW generation rate was non-significant (p = 0.334). Elemental and heating value analyses of the mixed organic fractions in kitchen waste had carbon 47.93%, hydrogen 6.20%, nitrogen 2.24%, sulphur 0.23%, oxygen 39.01%, and C and N ratio 27.78. Findings concluded that food waste was 56% of total MSW with 71.03% moisture content and a modest heating value of 5566 J/g. Existing temporary storage capacity of MSW is 51% of the total MSW generated considering the weighted MSW generation rate of 0.57 kg/person/day calculated in this study. Composting could be a possible final disposal option due to high moisture and organic content and can be studied in future research. Development of a transfer station, introduction of home composting programmes and awareness towards proper segregation and reduction of waste at the household level is suggested to attain sustainability in the MSW management system.
Resources Conservation and Recycling | 2012
Muhammad Asim; Syeda Adila Batool; Muhammad Nawaz Chaudhry
Estimating negative impacts of MSW dumps on its surrounding environment is the key requirement for any remedial measures. This study has been undertaken to map bio-thermal effects of MSW dumping at and around dumping facilities (non-engineered) using satellite imagery for Faisalabad, Pakistan. Thirty images of Landsat 8 have been selected after validation for the accuracy of their observational details from April 2013 to October 2015. Land Surface Temperature (LST), NDVI, SAVI and MSAVI have been derived from these images through Digital Image Processing (DIP) and have been subjected to spatio-temporal analysis in GIS environment. MSW dump has been found with average temperature elevation of 4.3K and 2.78K from nearby agriculture land and urban settlement respectively. Vegetation health has been used as the bio-indicator of MSW effects and is implemented through NDVI, SAVI, MSAVI. Spatial analyses have been used to mark boundary of bio-thermally affected zone around dumped MSW and measure 700m. Seasonal fluctuations of elevated temperatures and boundary of the bio-thermally affected zones have also been discussed. Based on the direct relation found between vegetation vigor and the level of deterioration within the bio-thermally affected region, use of crops with heavy vigor is recommended to study MSW hazard influence using bio-indicators of vegetation health.
Waste Management | 2008
Syeda Adila Batool; Nawaz Chaudhry; Khalid Majeed
The aim of this study is to characterize the waste from the textile industry, to identify the sources and types of waste generation and to find out the economic and employment potential in this sector. Textile waste, its management, and the economic and employment potential in this sector are unrevealed facts in developing countries such as Pakistan. The textile industry is ranked first in export earning in Pakistan. Textile export of yarn and cloth from Faisalabad is US