Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sam Kunes is active.

Publication


Featured researches published by Sam Kunes.


Gene | 1987

Plasmid construction by homologous recombination in yeast.

Hong Ma; Sam Kunes; P J Schatz; David Botstein

We describe a convenient method for constructing new plasmids that relies on interchanging parts of plasmids by homologous recombination in Saccharomyces cerevisiae. A circular recombinant plasmid of a desired structure is regenerated after transformation of yeast with a linearized plasmid and a DNA restriction fragment containing appropriate homology to serve as a substrate for recombinational repair. The free ends of the input DNA molecules need not be homologous in order for efficient recombination between internal homologous regions to occur. The method is particularly useful for incorporating into or removing from plasmids selectable markers, centromere or replication elements, or particular alleles of a gene of interest. Plasmids constructed in yeast can subsequently be recovered in an Escherichia coli host. Using this method, we have constructed an extended series of new yeast centromere, episomal and replicating (YCp, YEp, and YRp) plasmids containing, in various combinations, the selectable yeast markers LEU2, HIS3, LYS2, URA3 and TRP1.


Cell | 2006

Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila.

Shovon I. Ashraf; Anna L. McLoon; Sarah M. Sclarsic; Sam Kunes

Long-lasting forms of memory require protein synthesis, but how the pattern of synthesis is related to the storage of a memory has not been determined. Here we show that neural activity directs the mRNA of the Drosophila Ca(2+), Calcium/Calmodulin-dependent Kinase II (CaMKII), to postsynaptic sites, where it is rapidly translated. These features of CaMKII synthesis are recapitulated during the induction of a long-term memory and produce patterns of local protein synthesis specific to the memory. We show that mRNA transport and synaptic protein synthesis are regulated by components of the RISC pathway, including the SDE3 helicase Armitage, which is specifically required for long-lasting memory. Armitage is localized to synapses and lost in a memory-specific pattern that is inversely related to the pattern of synaptic protein synthesis. Therefore, we propose that degradative control of the RISC pathway underlies the pattern of synaptic protein synthesis associated with a stable memory.


Cell | 1996

Hedgehog, Transmitted along Retinal Axons, Triggers Neurogenesis in the Developing Visual Centers of the Drosophila Brain

Zhen Huang; Sam Kunes

The development of the visual centers of the Drosophila brain is tightly regulated by the ingrowth of retinal axons from the developing eye. In the first optic ganglion, the lamina, arriving retinal axons trigger the precursors of their synaptic partners to complete a final cell division and commence neural differentiation. The secreted product of the hedgehog gene regulates the temporal assembly of photoreceptor precursor cells into ommatidial clusters in the compound eye. Here, we show that Hedgehog is transmitted along the retinal axons to serve as the inductive signal in the brain. Hedgehog acts in the first of two retinal axon-mediated steps in the assembly of lamina synaptic cartridges. These observations provide a novel insight into the molecular interactions that orchestrate the assembly of neural precursor cells into precise synaptic circuits.


Cell | 1994

Pattern formation in the visual centers of the Drosophila brain: wingless acts via decapentaplegic to specify the dorsoventral axis.

Kimberly A. Kaphingst; Sam Kunes

A stepwise morphogenetic program of cell division and cell fate determination generates the precise neuronal architecture of the visual centers of the Drosophila brain. Here, we show that the assembly of the target structure for ingrowing retinal axons involves cell-cell interactions mediated by the secreted product of the wingless (wg) gene. wg, expressed in two symmetrical domains of the developing brain, is required to induce and maintain the expression of the secreted decapentaplegic (dpp) gene product in adjacent domains. wg and dpp function are required for target field neurons to adopt their proper fates and to send axons into the developing target structure. These observations implicate a cascade of diffusible signaling molecules in patterning the visual centers of the Drosophila brain.


Current Opinion in Neurobiology | 2006

A trace of silence: memory and microRNA at the synapse.

Shovon I. Ashraf; Sam Kunes

Identifying the neural circuits that mediate particular behaviors and uncovering their plasticity is an endeavor at the heart of neuroscience. This effort is allied with the elucidation of plasticity mechanisms, because the molecular determinants of plasticity can be markers for the neurons and synapses that are modified by experience. Of particular interest is protein synthesis localized to the synapse, which might establish and maintain the stable modification of neuronal properties, including the pattern and strength of synaptic connections. Recent studies reveal that microRNAs and the RISC pathway regulate synaptic protein synthesis. Is synaptic activity of the RISC pathway a molecular signature of memory?


Proceedings of the National Academy of Sciences of the United States of America | 2010

Endocytic pathway is required for Drosophila Toll innate immune signaling

Hon Ren Huang; Zhijian J. Chen; Sam Kunes; Geen-Dong Chang; Tom Maniatis

The Toll signaling pathway is required for the innate immune response against fungi and Gram-positive bacteria in Drosophila. Here we show that the endosomal proteins Myopic (Mop) and Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) are required for the activation of the Toll signaling pathway. This requirement is observed in cultured cells and in flies, and epistasis experiments show that the Mop protein functions upstream of the MyD88 adaptor and the Pelle kinase. Mop and Hrs, which are critical components of the ESCRT-0 endocytosis complex, colocalize with the Toll receptor in endosomes. We conclude that endocytosis is required for the activation of the Toll signaling pathway.


Development | 2004

An axon scaffold induced by retinal axons directs glia to destinations in the Drosophila optic lobe.

Richard E. Dearborn; Sam Kunes

In the developing Drosophila visual system, glia migrate into stereotyped positions within the photoreceptor axon target fields and provide positional information for photoreceptor axon guidance. Glial migration conversely depends on photoreceptor axons, as glia precursors stall in their progenitor zones when retinal innervation is eliminated. Our results support the view that this requirement for retinal innervation reflects a role of photoreceptor axons in the establishment of an axonal scaffold that guides glial cell migration. Optic lobe cortical axons extend from dorsal and ventral positions towards incoming photoreceptor axons and establish at least four separate pathways that direct glia to proper destinations in the optic lobe neuropiles. Photoreceptor axons induce the outgrowth of these scaffold axons. Most glia do not migrate when the scaffold axons are missing. Moreover, glia follow the aberrant pathways of scaffold axons that project aberrantly, as occurs in the mutant dachsous. The local absence of glia is accompanied by extensive apoptosis of optic lobe cortical neurons. These observations reveal a mechanism for coordinating photoreceptor axon arrival in the brain with the distribution of glia to multiple target destinations, where they are required for axon guidance and neuronal survival.


Journal of Molecular Biology | 1985

Transformation of yeast with linearized plasmid DNA: Formation of inverted dimers and recombinant plasmid products

Sam Kunes; David Botstein; Maurice S. Fox

The molecular products of DNA double strand break repair were investigated after transformation of yeast (Saccharomyces cerevisiae) with linearized plasmid DNA. DNA of an autonomous yeast plasmid cleaved to generate free ends lacking homology with the yeast genome, when used in transformation along with sonicated non-homologous carrier DNA, gave rise to transformants with high frequency. Most of these transformants were found to harbor a head-to-head (inverted) dimer of the linearized plasmid. This outcome of transformation contrasts with that observed when the carrier DNA is not present. Transformants occur at a much reduced frequency and harbor either the parent plasmid or a plasmid with deletion at the site of the cleavage. When the linearized plasmid is introduced along with sonicated carrier DNA and a homologous DNA restriction fragment that spans the site of plasmid cleavage, homologous recombination restores the plasmid to its original circular form. Inverted dimer plasmids are not detected. This relationship between homologous recombination and a novel DNA transaction that yields rearrangement could be important to the cell, as the latter could lead to a loss of gene function and lethality.


Journal of Biological Chemistry | 2010

The full-length unprocessed hedgehog protein is an active signaling molecule

Robert Tokhunts; Samer Singh; Tehyen Chu; Gisela D'Angelo; Valérie Baubet; John A. Goetz; Zhen Huang; Ziqiang Yuan; Manuel Ascano; Yana Zavros; Pascal P. Thérond; Sam Kunes; Nadia Dahmane; David J. Robbins

The hedgehog (HH) family of ligands plays an important instructional role in metazoan development. HH proteins are initially produced as ∼45-kDa full-length proteins, which undergo an intramolecular cleavage to generate an amino-terminal product that subsequently becomes cholesterol-modified (HH-Np). It is well accepted that this cholesterol-modified amino-terminal cleavage product is responsible for all HH-dependent signaling events. Contrary to this model we show here that full-length forms of HH proteins are able to traffic to the plasma membrane and participate directly in cell-cell signaling, both in vitro and in vivo. We were also able to rescue a Drosophila eye-specific hh loss of function phenotype by expressing a full-length form of hh that cannot be processed into HH-Np. These results suggest that in some physiological contexts full-length HH proteins may participate directly in HH signaling and that this novel activity of full-length HH may be evolutionarily conserved.


Current Opinion in Neurobiology | 1993

Topography in the Drosophila visual system

Sam Kunes; Hermann Steller

The Drosophila visual system offers an excellent opportunity for studying the development of proper retinotopic connections at the level of individual identifiable cell types. Recent work suggests that, despite obvious anatomical and developmental differences, at least some of the general developmental strategies operating in the Drosophila visual system parallel observations made previously for vertebrates. The extensive repertoire of powerful genetic and molecular techniques available in Drosophila can now be directed towards determining whether these parallels also reflect similarities in the underlying molecular mechanisms.

Collaboration


Dive into the Sam Kunes's collaboration.

Top Co-Authors

Avatar

David Botstein

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurice S. Fox

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Richard E. Dearborn

Albany College of Pharmacy and Health Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew F. Taylor

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge