Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samira M. Azarin is active.

Publication


Featured researches published by Samira M. Azarin.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling

Xiaojun Lian; Cheston Hsiao; Gisela F. Wilson; Kexian Zhu; Laurie B. Hazeltine; Samira M. Azarin; Kunil K. Raval; Jianhua Zhang; Timothy J. Kamp; Sean P. Palecek

Human pluripotent stem cells (hPSCs) offer the potential to generate large numbers of functional cardiomyocytes from clonal and patient-specific cell sources. Here we show that temporal modulation of Wnt signaling is both essential and sufficient for efficient cardiac induction in hPSCs under defined, growth factor-free conditions. shRNA knockdown of β-catenin during the initial stage of hPSC differentiation fully blocked cardiomyocyte specification, whereas glycogen synthase kinase 3 inhibition at this point enhanced cardiomyocyte generation. Furthermore, sequential treatment of hPSCs with glycogen synthase kinase 3 inhibitors followed by inducible expression of β-catenin shRNA or chemical inhibitors of Wnt signaling produced a high yield of virtually (up to 98%) pure functional human cardiomyocytes from multiple hPSC lines. The robust ability to generate functional cardiomyocytes under defined, growth factor-free conditions solely by genetic or chemically mediated manipulation of a single developmental pathway should facilitate scalable production of cardiac cells suitable for research and regenerative applications.


Nature Protocols | 2013

Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions

Xiaojun Lian; Jianhua Zhang; Samira M. Azarin; Kexian Zhu; Laurie B. Hazeltine; Xiaoping Bao; Cheston Hsiao; Timothy J. Kamp; Sean P. Palecek

The protocol described here efficiently directs human pluripotent stem cells (hPSCs) to functional cardiomyocytes in a completely defined, growth factor– and serum-free system by temporal modulation of regulators of canonical Wnt signaling. Appropriate temporal application of a glycogen synthase kinase 3 (GSK3) inhibitor combined with the expression of β-catenin shRNA or a chemical Wnt inhibitor is sufficient to produce a high yield (0.8–1.3 million cardiomyocytes per cm2) of virtually pure (80–98%) functional cardiomyocytes in 14 d from multiple hPSC lines without cell sorting or selection. Qualitative (immunostaining) and quantitative (flow cytometry) characterization of differentiated cells is described to assess the expression of cardiac transcription factors and myofilament proteins. Flow cytometry of BrdU incorporation or Ki67 expression in conjunction with cardiac sarcomere myosin protein expression can be used to determine the proliferative capacity of hPSC-derived cardiomyocytes. Functional human cardiomyocytes differentiated via these protocols may constitute a potential cell source for heart disease modeling, drug screening and cell-based therapeutic applications.


Nature Biotechnology | 2012

Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells

Ethan S. Lippmann; Samira M. Azarin; Jennifer E Kay; Randy Alan Nessler; Hannah K. Wilson; Abraham J. Al-Ahmad; Sean P. Palecek; Eric V. Shusta

The blood-brain barrier (BBB) is crucial to the health of the brain and is often compromised in neurological disease. Moreover, because of its barrier properties, this endothelial interface restricts uptake of neurotherapeutics. Thus, a renewable source of human BBB endothelium could spur brain research and pharmaceutical development. Here we show that endothelial cells derived from human pluripotent stem cells (hPSCs) acquire BBB properties when co-differentiated with neural cells that provide relevant cues, including those involved in Wnt/β-catenin signaling. The resulting endothelial cells have many BBB attributes, including well-organized tight junctions, appropriate expression of nutrient transporters and polarized efflux transporter activity. Notably, they respond to astrocytes, acquiring substantial barrier properties as measured by transendothelial electrical resistance (1,450 ± 140 Ω cm2), and they possess molecular permeability that correlates well with in vivo rodent blood-brain transfer coefficients.


Biomaterials | 2010

The Microwell Control of Embryoid Body Size in order to Regulate Cardiac Differentiation of Human Embryonic Stem Cells

Jeffrey C. Mohr; Jianhua Zhang; Samira M. Azarin; Andrew G. Soerens; Juan J. de Pablo; James A. Thomson; Gary E. Lyons; Sean P. Palecek; Timothy J. Kamp

The differentiation of human embryonic stem cells (hESCs) into cardiomyocytes (CMs) using embryoid bodies (EBs) is relatively inefficient and highly variable. Formation of EBs using standard enzymatic disaggregation techniques results in a wide range of sizes and geometries of EBs. Use of a 3-D cuboidal microwell system to culture hESCs in colonies of defined dimensions, 100-500 microm in lateral dimensions and 120 microm in depth, enabled formation of more uniform-sized EBs. The 300 microm microwells produced highest percentage of contracting EBs, but flow cytometry for myosin light chain 2A (MLC2a) expressing cells revealed a similar percentage (approximately 3%) of cardiomyocytes formed in EBs from 100 microm to 300 microm microwells. These data, and immunolabeling with anti-MF20 and MLC2a, suggest that the smaller EBs are less likely to form contracting EBs, but those contracting EBs are relatively enriched in cardiomyocytes compared to larger EB sizes where CMs make up a proportionately smaller fraction of the total cells. We conclude that microwell-engineered EB size regulates cardiogenesis and can be used for more efficient and reproducible formation of hESC-CMs needed for research and therapeutic applications.


Scientific Reports | 2015

A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources

Ethan S. Lippmann; Abraham J. Al-Ahmad; Samira M. Azarin; Sean P. Palecek; Eric V. Shusta

Blood-brain barrier (BBB) models are often used to investigate BBB function and screen brain-penetrating therapeutics, but it has been difficult to construct a human model that possesses an optimal BBB phenotype and is readily scalable. To address this challenge, we developed a human in vitro BBB model comprising brain microvascular endothelial cells (BMECs), pericytes, astrocytes and neurons derived from renewable cell sources. First, retinoic acid (RA) was used to substantially enhance BBB phenotypes in human pluripotent stem cell (hPSC)-derived BMECs, particularly through adherens junction, tight junction, and multidrug resistance protein regulation. RA-treated hPSC-derived BMECs were subsequently co-cultured with primary human brain pericytes and human astrocytes and neurons derived from human neural progenitor cells (NPCs) to yield a fully human BBB model that possessed significant tightness as measured by transendothelial electrical resistance (~5,000 Ωxcm2). Overall, this scalable human BBB model may enable a wide range of neuroscience studies.


Biomaterials | 2012

Modulation of Wnt/β-catenin signaling in human embryonic stem cells using a 3-D microwell array

Samira M. Azarin; Xiaojun Lian; Elise A. Larson; Heidi M. Popelka; Juan J. de Pablo; Sean P. Palecek

Intercellular interactions in the cell microenvironment play a critical role in determining cell fate, but the effects of these interactions on pathways governing human embryonic stem cell (hESC) behavior have not been fully elucidated. We and others have previously reported that 3-D culture of hESCs affects cell fates, including self-renewal and differentiation to a variety of lineages. Here we have used a microwell culture system that produces 3-D colonies of uniform size and shape to provide insight into the effect of modulating cell-cell contact on canonical Wnt/β-catenin signaling in hESCs. Canonical Wnt signaling has been implicated in both self-renewal and differentiation of hESCs, and competition for β-catenin between the Wnt pathway and cadherin-mediated cell-cell interactions impacts various developmental processes, including the epithelial-mesenchymal transition. Our results showed that hESCs cultured in 3-D microwells exhibited higher E-cadherin expression than cells on 2-D substrates. The increase in E-cadherin expression in microwells was accompanied by a downregulation of Wnt signaling, as evidenced by the lack of nuclear β-catenin and downregulation of Wnt target genes. Despite this reduction in Wnt signaling in microwell cultures, embryoid bodies (EBs) formed from hESCs cultured in microwells exhibited higher levels of Wnt signaling than EBs from hESCs cultured on 2-D substrates. Furthermore, the Wnt-positive cells within EBs showed upregulation of genes associated with cardiogenesis. These results demonstrate that modulation of intercellular interactions impacts Wnt/β-catenin signaling in hESCs.


Nature Communications | 2015

In vivo capture and label-free detection of early metastatic cells

Samira M. Azarin; Ji Yi; Robert Michael Gower; Brian A. Aguado; Megan E. Sullivan; Ashley G. Goodman; Eric J. Jiang; Shreyas S. Rao; Yinying Ren; Susan L. Tucker; Vadim Backman; Jacqueline S. Jeruss; Lonnie D. Shea

Breast cancer is a leading cause of death for women, with mortality resulting from metastasis. Metastases are often detected once tumor cells affect the function of solid organs, with a high disease burden limiting effective treatment. Here we report a method for the early detection of metastasis using an implanted scaffold to recruit and capture metastatic cells in vivo, which achieves high cell densities and reduces the tumor burden within solid organs 10-fold. Recruitment is associated with infiltration of immune cells, which include Gr1hiCD11b+ cells. We identify metastatic cells in the scaffold through a label-free detection system using inverse-spectroscopic optical coherence tomography, which identifies changes to nanoscale tissue architecture associated with the presence of tumor cells. For patients at risk of recurrence, scaffold implantation following completion of primary therapy has the potential to identify metastatic disease at the earliest stage, enabling initiation of therapy while the disease burden is low.


Journal of Cellular and Molecular Medicine | 2008

Engineering tissue from human embryonic stem cells

Christian M. Metallo; Samira M. Azarin; Lin Ji; J. J. de Pablo; Sean P. Palecek

•  Stem cell tissue engineering –  Potential cell sources –  Incorporation of hESCs •  Undifferentiated hESC culture engineering •  Ectodermal tissues –  Skin –  Cornea –  Neural lineages •  Mesodermal tissues –  Heart –  Bone and cartilage –  Circulatory system •  Endodermal tissues –  Pancreas –  Liver •  Future challenges


Biomaterials | 2014

Modulation of leukocyte infiltration and phenotype in microporous tissue engineering scaffolds via vector induced IL-10 expression

R. Michael Gower; Ryan M. Boehler; Samira M. Azarin; Christine F. Ricci; Joshua N. Leonard; Lonnie D. Shea

Biomaterial scaffolds are central to many tissue engineering strategies as they create a space for tissue growth and provide a support for cell adhesion and migration. However, biomaterial implantation results in unavoidable injury resulting in an inflammatory response, which can impair integration with the host and tissue regeneration. Toward the goal of reducing inflammation, we investigated the hypothesis that a lentiviral gene therapy-based approach to localized and sustained IL-10 expression at a scaffold could modulate the number, relative proportions, and cytokine production of infiltrating leukocyte populations. Flow cytometry was used to quantify infiltration of six leukocyte populations for 21 days following implantation of PLG scaffolds into intraperitoneal fat. Leukocytes with innate immune functions (i.e., macrophages, dendritic cells, neutrophils) were most prevalent at early time points, while T lymphocytes became prevalent by day 14. Reporter gene delivery indicated that transgene expression persisted at the scaffold for up to 28 days and macrophages were the most common leukocyte transduced, while transduced dendritic cells expressed the greatest levels of transgene. IL-10 delivery decreased leukocyte infiltration by 50% relative to controls, increased macrophage IL-10 expression, and decreased macrophage, dendritic cell, and CD4 T cell IFN-γ expression. Thus, IL-10 gene delivery significantly decreased inflammation following scaffold implant into the intraperitoneal fat, in part by modulating cytokine expression of infiltrating leukocytes.


Journal of Biomedical Optics | 2014

Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography.

Ji Yi; Andrew J. Radosevich; Yolanda Stypula-Cyrus; Nikhil N. Mutyal; Samira M. Azarin; Elizabeth Horcher; Michael J. Goldberg; Laura K. Bianchi; Shailesh Bajaj; Hemant K. Roy; Vadim Backman

Abstract. Field carcinogenesis is the initial stage of cancer progression. Understanding field carcinogenesis is valuable for both cancer biology and clinical medicine. Here, we used inverse spectroscopic optical coherence tomography to study colorectal cancer (CRC) and pancreatic cancer (PC) field carcinogenesis. Depth-resolved optical and ultrastructural properties of the mucosa were quantified from histologically normal rectal biopsies from patients with and without colon adenomas (n=85) as well as from histologically normal peri-ampullary duodenal biopsies from patients with and without PC (n=22). Changes in the epithelium and stroma in CRC field carcinogenesis were separately quantified. In both compartments, optical and ultra-structural alterations were consistent. Optical alterations included lower backscattering (μb) and reduced scattering (μs′) coefficients and higher anisotropy factor g. Ultrastructurally pronounced alterations were observed at length scales up to ∼450  nm, with the shape of the mass density correlation function having a higher shape factor D, thus implying a shift to larger length scales. Similar alterations were found in the PC field carcinogenesis despite the difference in genetic pathways and etiologies. We further verified that the chromatin clumping in epithelial cells and collagen cross-linking caused D to increase in vitro and could be among the mechanisms responsible for the observed changes in epithelium and stroma, respectively.

Collaboration


Dive into the Samira M. Azarin's collaboration.

Top Co-Authors

Avatar

Sean P. Palecek

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge