Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel A. Bryan is active.

Publication


Featured researches published by Samuel A. Bryan.


Electroanalysis | 2002

Spectroelectrochemical Sensing Based on Multimode Selectivity Simultaneously Achievable in a Single Device.

Mila Maizels; Carl J. Seliskar; William R. Heineman; Samuel A. Bryan

Incorporation of planar waveguide technology into a spectroelectrochemical sensor is described. In this sensor design, a potassium ion-exchanged BK7 glass waveguide was over-coated with a thin film of indium tin oxide (ITO) that served as an optically transparent electrode. A chemically selective film was spin-coated on top of the ITO film. The sensor supported five optical modes at 442 nm and three at 633 nm. Investigations on the impact of the ITO film on the optical properties of the waveguide and on the spectroelectrochemical performance of the sensor are reported. Sensing was based on the change in attenuation of light propagated through the waveguide resulting from an optically absorbing analyte. By applying either a triangular or square wave excitation potential waveform, electromodulation of the optical signal has been demonstrated with Fe(CN)6(3-/4-) as a model electroactive couple that partitions into a PDMDAAC-SiO2 film [where PDMDAAC = poly(dimethyldiallylammonium chloride)] and absorbs at 442 nm.


Radiochimica Acta | 2011

Spectroscopic Monitoring of Spent Nuclear Fuel Reprocessing Streams: An Evaluation of Spent Fuel Solutions via Raman, Visible, and Near-Infrared Spectroscopy

Samuel A. Bryan; Tatiana G. Levitskaia; Amanda M. Johnsen; Christopher R. Orton; James M. Peterson

Abstract The potential of using optical spectroscopic techniques, such as Raman and visible/near infrared (Vis/NIR), for on-line process control and special nuclear materials accountability applications at a spent nuclear fuel reprocessing facility was evaluated. The availability of on-line, real-time techniques that directly measure process concentrations of nuclear materials will enhance the performance and proliferation resistance of the solvent extraction processes. Further, on-line monitoring of radiochemical streams will also improve reprocessing plant operation and safety. This paper reviews the current state of development of the spectroscopic on-line monitoring techniques for such solutions. To further examine the applicability of optical spectroscopy for this application, segments of a spent nuclear fuel, with approximate burn-up values of 70 MW d/kg M, were dissolved in concentrated nitric acid and adjusted to varying final concentrations of HNO3. The resulting spent fuel solutions were batch-contacted with tributyl phosphate/n-dodecane organic solvent. The feed and equilibrium aqueous and loaded organic solutions were subjected to optical measurements. The obtained spectra showed the presence of quantifiable Raman bands due to NO3− and UO22+ and Vis/NIR bands due to multiple species of Pu(IV), Pu(VI), Np(V), the Np(V)-U(VI) cation–cation complex, and Nd(III) in fuel solutions. This result justifies spectroscopic techniques as a promising methodology for monitoring spent fuel processing solutions in real-time. The fuel solution was quantitatively evaluated based on spectroscopic measurements and was compared to inductively coupled plasma-mass spectroscopy analysis and Oak Ridge Isotope Generator (ORIGEN)-based estimates.


Analytical Chemistry | 2011

Semi-Infinite Linear Diffusion Spectroelectrochemistry on an Aqueous Micro-Drop

Cynthia A. Schroll; Sayandev Chatterjee; William R. Heineman; Samuel A. Bryan

We report a technique for conducting semi-infinite diffusion spectroelectrochemistry on an aqueous micro-drop as an easy and economic way of investigating spectroelectrochemical behavior of redox active compounds and correlating spectroscopic properties with thermodynamic potentials on a small scale. The chemical systems used to demonstrate the aqueous micro-drop technique were an absorbance based ionic probe [Fe(CN)(6)](3-/4-) and an emission based ionic probe [Re(dmpe)(3)](2+/+). These chemical systems in a micro-drop were evaluated using cyclic voltammetry and UV-visible absorbance and luminescence spectroscopies.


Analytical Chemistry | 2011

Luminescence-Based Spectroelectrochemical Sensor for [Tc(dmpe)3]2+/+ (dmpe = 1,2-bis(dimethylphosphino)ethane) within a Charge-Selective Polymer Film

Sayandev Chatterjee; Andrew S. Del Negro; Matthew K. Edwards; Samuel A. Bryan; Necati Kaval; Nebojsa Pantelic; Laura K. Morris; William R. Heineman; Carl J. Seliskar

A spectroelectrochemical sensor consisting of an indium tin oxide (ITO) optically transparent electrode (OTE) coated with a thin film of partially sulfonated polystyrene-blockpoly(ethylene-ran-butylene)-block-polystyrene (SSEBS) was developed for [Tc(dmpe)(3)](+) (dmpe = 1,2-bis(dimethylphosphino)ethane). [Tc(dmpe)(3)](+) was preconcentrated by ion-exchange into the SSEBS film after a 20 min exposure to aqueous [Tc(dmpe)(3)](+) solution, resulting in a 14-fold increase in cathodic peak current compared to a bare OTE. Colorless [Tc(dmpe)(3)](+) was reversibly oxidized to colored [Tc(dmpe)(3)](2+) by cyclic voltammetry. Detection of [Tc(dmpe)(3)](2+) was accomplished through emission spectroscopy by electrochemically oxidizing the complex from nonemissive [Tc(dmpe)(3)](+) to emissive [Tc(dmpe)(3)](2+). The working principle of the sensor consisted of electrochemically cycling between nonemissive [Tc(dmpe)(3)](+) and emissive [Tc(dmpe)(3)](2+) and monitoring the modulated emission (λ(exc) = 532 nm; λ(em) = 660 nm). The sensor gave a linear response over the concentration range of 0.16-340.0 μM of [Tc(dmpe)(3)](2+/+) in aqueous phase with a detection limit of 24 nM.


Analytical Chemistry | 2013

Electrochemistry and Spectroelectrochemistry of europium(III) chloride in 3LiCl-2KCl from 643 to 1123 K.

Cynthia A. Schroll; Sayandev Chatterjee; Tatiana G. Levitskaia; William R. Heineman; Samuel A. Bryan

The electrochemical and spectroelectrochemical behavior of europium(III) chloride in a molten salt eutectic, 3LiCl-2KCl, over a temperature range of 643-1123 K using differential pulse voltammetry, cyclic voltammetry, potential step chronoabsorptometry, and thin-layer spectroelectrochemistry is reported. The electrochemical reaction was determined to be the one-electron reduction of Eu(3+) to Eu(2+) at all temperatures. The redox potential of Eu(3+/2+) shifts to more positive potentials, and the diffusion coefficient for Eu(3+) increases as temperature increases. The results for the number of electrons transferred, redox potential, and diffusion coefficient are in good agreement between the electrochemical and spectroelectrochemical techniques. This research extends our ability to develop a spectroelectrochemical sensor for lanthanides and actinides into molten salt media.


Analytical Chemistry | 2013

Water O–H Stretching Raman Signature for Strong Acid Monitoring via Multivariate Analysis

Amanda J. Casella; Tatiana G. Levitskaia; James M. Peterson; Samuel A. Bryan

A distinct need exists for real time information on an acid concentration of industrial aqueous streams. Acid strength affects efficiency and selectivity of many separation processes, including nuclear fuel reprocessing. Despite the seeming simplicity of the problem, no practical solution has been offered yet, particularly for the large-scale schemes involving toxic streams such as highly radioactive nuclear wastes. The classic potentiometric technique is not amiable for online measurements due to the requirements of frequent calibration/maintenance and poor long-term stability in aggressive chemical and radiation environments. Therefore, an alternative analytical method is needed. In this work, the potential of using Raman spectroscopic measurements for online monitoring of strong acid concentration in solutions relevant to dissolved used nuclear fuel was investigated. The Raman water signature was monitored for solution systems containing nitric and hydrochloric acids and their sodium salts of systematically varied composition, ionic strength, and temperature. The trivalent neodymium ion simulated the presence of multivalent f metals. The gaussian deconvolution analysis was used to interpret observed effects of the solution nature on the Raman water O-H stretching spectrum. The generated Raman spectroscopic database was used to develop predictive multivariate regression models for the quantification of the acid and other solution components, as well as selected physicochemical properties. This method was validated using independent experiments conducted in a flow solvent extraction system.


Inorganic Chemistry | 2011

Electronic and Molecular Structures of trans-Dioxotechnetium(V) Polypyridyl Complexes in the Solid State

Sayandev Chatterjee; Andrew S. Del Negro; Zheming Wang; Matthew K. Edwards; Frances N. Skomurski; Sean E. Hightower; Jeanette A. Krause; Brendan Twamley; Brian P. Sullivan; Christian Reber; William R. Heineman; Carl J. Seliskar; Samuel A. Bryan

The structures of novel Tc(V) complexes trans-[TcO(2)(py)(4)]Cl·2H(2)O (1a), trans-[TcO(2)(pic)(4)]Cl·2H(2)O (2a), and trans-[TcO(2)(pic)(4)]BPh(4) (2b) were determined by X-ray crystallography, and their spectroscopic characteristics were investigated by emission spectroscopy and atomic scale calculations. The cations adopt a tetragonally distorted octahedral geometry, with a trans orientation of the apical oxo groups. trans-[TcO(2)(pic)(4)]BPh(4) has an inversion center located on technetium; however, for trans-[TcO(2)(py)(4)]Cl·2H(2)O and trans-[TcO(2)(pic)(4)]Cl·2H(2)O, a strong H bond formed by only one of the oxo substituents introduces an asymmetry in the structure, resulting in inequivalent trans Tc-N and Tc═O distances. Upon 415 nm excitation at room temperature, the complexes exhibited broad, structureless luminescences with emission maxima at approximately 710 nm (1a) and 750 nm (2a, 2b). Like the Re(V) analogs, the Tc(V) complexes luminesce from a (3)E(g) excited state. Upon cooling the samples from 278 to 8 K, distinct vibronic features appear in the spectra of the complexes along with increases in emission intensities. The low temperature emission spectra display the characteristic progressions of the symmetric O═Tc═O and the Tc-L stretching modes. Lowest-energy, triplet excited-state distortions calculated using a time-dependent theoretical approach are in good agreement with the experimental spectra. The discovery of luminescence from the trans-dioxotechnetium(V) complexes provides the first opportunity to directly compare fundamental luminescence properties of second- and third-row d(2) metal-oxo congeners.


Archive | 2004

Final Report - Gas Generation Testing of Uranium Metal in Simulated K Basin Sludge and in Grouted Sludge Waste Forms

Calvin H. Delegard; Andrew J. Schmidt; Rachel L. Sell; Sergei I. Sinkov; Samuel A. Bryan; Sue Gano; Brenda M. Thornton

The Waste Isolation Pilot Plant (WIPP) is being considered for the disposal of K Basin sludge as RH-TRU. Because the hydrogen gas concentration in the 55-gallon RH-TRU sealed drums to be transported to WIPP is limited by flammability safety, the number of containers and shipments likely will be driven by the rate of hydrogen generated by the uranium metal-water reaction (U + 2 H{sub 2}O {yields} UO{sub 2} + 2 H{sub 2}) in combination with the hydrogen generated from water and organic radiolysis. Gas generation testing was conducted with uranium metal particles of known surface area, in simulated K West (KW) Basin canister sludge and immobilized in candidate grout solidification matrices. This study evaluated potential for Portland cement and magnesium phosphate grouts to inhibit the reaction of water with uranium metal in the sludge and thereby permit higher sludge loading to the disposed waste form. The best of the grouted waste forms decreased the uranium metal-water reaction by a factor of four.


Analytical Chemistry | 2015

Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes.

Amanda J. Casella; Laura R. H. Ahlers; Emily L. Campbell; Tatiana G. Levitskaia; James M. Peterson; Frances N. Smith; Samuel A. Bryan

In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model predicted the pH of this validation data set within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH online in applications such as nuclear fuel reprocessing.


Other Information: PBD: 21 Jul 2000 | 2000

Overview of the Flammability of Gases Generated in Hanford Waste Tanks

Lenna A. Mahoney; James L. Huckaby; Samuel A. Bryan; Gerald D. Johnson

This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, the flammability and detonability limits of the gas constituents, and the availability of ignition sources. The intrinsic flammability (or nonflammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, volume of the release, and the tank ventilation rate, which are not covered in this report.

Collaboration


Dive into the Samuel A. Bryan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tatiana G. Levitskaia

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda M. Lines

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda J. Casella

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sayandev Chatterjee

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Timothy L. Hubler

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andrew S. Del Negro

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christopher R. Orton

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge