Samuel Yick
Commonwealth Scientific and Industrial Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samuel Yick.
Chemsuschem | 2014
Dong Han Seo; Samuel Yick; Zhao Jun Han; Jinghua Fang; K. Ostrikov
Graphene and carbon nanotubes (CNTs) are attractive electrode materials for supercapacitors. However, challenges such as the substrate-limited growth of CNTs, nanotube bundling in liquid electrolytes, under-utilized basal planes, and stacking of graphene sheets have so far impeded their widespread application. Here we present a hybrid structure formed by the direct growth of CNTs onto vertical graphene nanosheets (VGNS). VGNS are fabricated by a green plasma-assisted method to break down and reconstruct a natural precursor into an ordered graphitic structure. The synergistic combination of CNTs and VGNS overcomes the challenges intrinsic to both materials. The resulting VGNS/CNTs hybrids show a high specific capacitance with good cycling stability. The charge storage is based mainly on the non-Faradaic mechanism. In addition, a series of optimization experiments were conducted to reveal the critical factors that are required to achieve the demonstrated high supercapacitor performance.
Nanoscale | 2011
Z. J. Han; Samuel Yick; I. Levchenko; Eugene Tam; M. M. A. Yajadda; Shailesh Kumar; P.J. Martin; Scott A. Furman; K. Ostrikov
Controlled synthesis of both single-walled carbon nanotube and carbon nanowire networks using the same CVD reactor and Fe/Al(2)O(3) catalyst by slightly altering the hydrogenation and temperature conditions is demonstrated. Structural, bonding and electrical characterization using SEM, TEM, Raman spectroscopy, and temperature-dependent resistivity measurements suggest that the nanotubes are of a high quality and a large fraction (well above the common 33% and possibly up to 75%) of them are metallic. On the other hand, the carbon nanowires are amorphous and semiconducting and feature a controlled sp(2)/sp(3) ratio. The growth mechanism which is based on the catalyst nanoisland analysis by AFM and takes into account the hydrogenation and temperature control effects explains the observed switch-over of the nanostructure growth modes. These results are important to achieve the ultimate control of chirality, structure, and conductivity of one-dimensional all-carbon networks.
Nanoscale | 2011
Zhao Jun Han; I. Levchenko; Samuel Yick; K. Ostrikov
Tailoring the density of random single-walled carbon nanotube (SWCNT) networks is of paramount importance for various applications, yet it remains a major challenge due to the insufficient catalyst activation in most growth processes. Here we report on a simple and effective method to maximise the number of active catalyst nanoparticles using catalytic chemical vapor deposition (CCVD). By modulating short pulses of acetylene into a methane-based CCVD growth process, the density of SWCNTs is dramatically increased by up to three orders of magnitude without increasing the catalyst density and degrading the nanotube quality. In the framework of a vapor-liquid-solid model, we attribute the enhanced growth to the high dissociation rate of acetylene at high temperatures at the nucleation stage, which can be effective in both supersaturating the larger catalyst nanoparticles and overcoming the nanotube nucleation energy barrier of the smaller catalyst nanoparticles. These results are highly relevant to numerous applications of random SWCNT networks in next-generation energy, sensing and biomedical devices.
Green Chemistry | 2015
Dong Han Seo; Shafique Pineda; Samuel Yick; John Bell; Zhao Jun Han; K. Ostrikov
A green and efficient conversion of redundant biomass into functional nanomaterials holds the key to sustainable future technologies. Recently, vertical graphene nanosheets (VGS) have emerged as promising nanomaterials for integration in high-performance biosensors and supercapacitors, owing to their excellent and unique structural, morphological and electrical properties. However, when considering the conventional techniques utilized in nanofabrication, such as thermal or chemical routes, these often involve complex, eco-destructive and resource-consuming processes. Here we report on a single-step, potentially scalable, environmentally-benign and plasma-enabled method to synthesize VGS from an underutilized and natural by-product precursor, honeycomb. The VGS multifunctionality is highlighted by its integration as supercapacitor electrodes for energy storage, and as an electrochemical biosensor for the detection of the neurotoxic Amyloid-beta (Aβ) biomarker of Alzheimers disease. The VGS were employed as binder-free supercapacitor electrodes, and demonstrated high specific capacitance up to 240 F g−1 at a scan rate of 5 mV s−1 and 100% capacitance retention after 2000 charge/discharge cycles. Furthermore, the VGS were functionalized with curcumin bioreceptors, and exhibited good sensitivity and selectivity towards the detection of neurotoxic Aβ species, and demonstrated a detection limit of 0.1 μg mL−1.
RSC Advances | 2015
Samuel Yick; Anne Mai-Prochnow; I. Levchenko; Jinghua Fang; Michelle Bull; Mark Bradbury; Anthony B. Murphy; K. Ostrikov
Carbon nanotubes (CNTs) can be fabricated with an ordered microstructure by controlling their growth process. Unlike dispersed carbon nanotubes, these vertically-aligned arrays have the ability to support or inhibit bacteria biofilms. Here, we show that by treating the carbon nanotube arrays with plasma, different effects on biofilms of Gram-positive (Bacillus subtilis, Staphylococcus epidermidis) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) can be observed.
Plasma Chemistry and Plasma Processing | 2016
Jungmi Hong; Morteza Aramesh; Olga Shimoni; Dong Han Seo; Samuel Yick; Amelia Greig; Christine Charles; Steven Prawer; Anthony B. Murphy
We investigate the synthesis of ammonia in a non-equilibrium atmospheric-pressure plasma using functionalized-nanodiamond and diamond-like-carbon coatings on α-Al2O3 spheres as catalysts. Oxygenated nanodiamonds were found to increase the production yield of ammonia, while hydrogenated nanodiamonds decreased the yield. Neither type of nanodiamond affected the plasma properties significantly. Using diffuse-reflectance FT-IR and XPS, the role of different functional groups on the catalyst surface was investigated. Evidence is presented that the carbonyl group is associated with an efficient surface adsorption and desorption of hydrogen in ammonia synthesis on the surface of the nanodiamonds, and an increased production of ammonia. Conformal diamond-like-carbon coatings, deposited by plasma-enhanced chemical vapour deposition, led to a plasma with a higher electron density, and increased the production of ammonia.
Biosensors and Bioelectronics | 2017
Shafique Pineda; Fabricio Frizera Borghi; Dong Han Seo; Samuel Yick; Malcolm A. Lawn; Timothy van der Laan; Zhao Jun Han; K. Ostrikov
Here, we present a rapid, low-temperature (200°C) plasma-enabled synthesis of graphene micro-islands (GMs). Morphological analyses of GMs by scanning electron microscopy (SEM) and atomic force microscopy (AFM) feature a uniform and open-networked array of aggregated graphene sheets. Structural and surface chemical characterizations by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) support the presence of thin graphitic edges and reactive oxygen functional groups. We demonstrate that these inherent properties of GMs enable its multifunctional capabilities as a bioactive interface. GMs exhibit a biocompatibility of 80% cell viability with primary fibroblast lung cells after 5 days. Further, GMs were assembled into an impedimetric genosensor, and its performance was characterized by electrochemical impedance spectroscopy (EIS). A dynamic sensing range of 1pM to 1nM is reported, and a limit of quantification (LOQ) of 2.03×10-13M is deduced, with selectivity to single-RNA-base mismatched sequences. The versatile nature of GMs may be explored to enable multi-faceted bioactive platforms for next-generation personalized healthcare technologies.
Nanoscale Research Letters | 2014
Jinghua Fang; I. Levchenko; Zhao Jun Han; Samuel Yick; K. Ostrikov
Control over nucleation and growth of multi-walled carbon nanotubes in the nanochannels of porous alumina membranes by several combinations of posttreatments, namely exposing the membrane top surface to atmospheric plasma jet and application of standard S1813 photoresist as an additional carbon precursor, is demonstrated. The nanotubes grown after plasma treatment nucleated inside the channels and did not form fibrous mats on the surface. Thus, the nanotube growth mode can be controlled by surface treatment and application of additional precursor, and complex nanotube-based structures can be produced for various applications. A plausible mechanism of nanotube nucleation and growth in the channels is proposed, based on the estimated depth of ion flux penetration into the channels.PACS63.22.Np Layered systems; 68. Surfaces and interfaces; Thin films and nanosystems (structure and non-electronic properties); 81.07.-b Nanoscale materials and structures: fabrication and characterization
IEEE Transactions on Plasma Science | 2011
K. Ostrikov; Shailesh Kumar; Qijin Cheng; Amanda E. Rider; M. M. A. Yajadda; Z. J. Han; Dong Han Seo; T. van der Laan; Samuel Yick; Eugene Tam; I. Levchenko
Using the advanced radio-frequency plasma-assisted magnetron deposition system, various nanostructures such as nanoflowers of carbon nanotubes, ZnO nanobelts, and silicon nanotrees were successfully synthesized. In this paper, we present the photographs of ICP and magnetron discharges, the photograph of a complex plasma structure, and the SEM images of various nanostructures synthesized in the system with magnetron and ICP sources operating simultaneously.
Functional Materials Letters | 2011
W. Cher; Samuel Yick; S. Xu; Z. J. Han; K. Ostrikov
Al-doped zinc oxide (AZO) thin films are deposited onto glass substrates using radio-frequency reactive magnetron sputtering and the improvements in their physical properties by post-synthesis thermal treatment are reported. X-ray diffraction spectra show that the structure of films can be controlled by adjusting the annealing temperatures, with the best crystallinity obtained at 400°C under a nitrogen atmosphere. These films exhibit improved quality and better optical transmittance as indicated by the UV-Vis spectra. Furthermore, the sheet resistivity is found to decrease from 1.87 × 10-3 to 5.63 × 10-4Ω⋅cm and the carrier mobility increases from 6.47 to 13.43 cm2 ⋅ V-1 ⋅ s-1 at the optimal annealing temperature. Our results demonstrate a simple yet effective way in controlling the structural, optical and electrical properties of AZO thin films, which is important for solar cell applications.
Collaboration
Dive into the Samuel Yick's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs