Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandrine Faure is active.

Publication


Featured researches published by Sandrine Faure.


The EMBO Journal | 1997

A member of the Ste20/PAK family of protein kinases is involved in both arrest of Xenopus oocytes at G2/prophase of the first meiotic cell cycle and in prevention of apoptosis

Sandrine Faure; Suzanne Vigneron; Marcel Dorée; Nathalie Morin

We have identified new members (X‐PAKs) of the Ste20/PAK family of protein kinases in Xenopus, and investigated their role in the process that maintains oocytes arrested in the cell cycle. Microinjection of a catalytically inactive mutant of X‐PAK1 with a K/R substitution in the ATP binding site, also deleted of its Nter‐half that contains the conserved domains responsible for binding of both Cdc42/Rac GTPases and SH3‐containing proteins, greatly facilitates oocyte release from G2/prophase arrest by progesterone and insulin. Addition of the same X‐PAK1 mutant to cell cycle extracts from unfertilized eggs induced apoptosis, as shown by activation of caspases and cytological changes in in vitro‐assembled nuclei. This was suppressed by adding Bcl‐2 or the DEVD peptide inhibitor of caspases, and rescued by competing the dominant‐negative mutant with its constitutively active X‐PAK1 counterpart. Such results indicate that X‐PAK1 (or another member of the Xenopus Ste20/PAK family of protein kinases) is involved in arrest of oocytes at G2/prophase and prevention of apoptosis; thus death by apoptosis and release of healthy oocytes from cell cycle arrest may be linked. That cell cycle arrest protects oocytes from apoptosis is consistent with the finding that extracts from metaphase II‐arrested oocytes are less sensitive to apoptotic signals than those from activated eggs.


Journal of Cell Biology | 2001

A novel p21-activated kinase binds the actin and microtubule networks and induces microtubule stabilization

Julien Cau; Sandrine Faure; Claude Delsert; Nathalie Morin

Coordination of the different cytoskeleton networks in the cell is of central importance for morphogenesis, organelle transport, and motility. The Rho family proteins are well characterized for their effects on the actin cytoskeleton, but increasing evidence indicates that they may also control microtubule (MT) dynamics. Here, we demonstrate that a novel Cdc42/Rac effector, X-p21-activated kinase (PAK)5, colocalizes and binds to both the actin and MT networks and that its subcellular localization is regulated during cell cycle progression. In transfected cells, X-PAK5 promotes the formation of stabilized MTs that are associated in bundles and interferes with MTs dynamics, slowing both the elongation and shrinkage rates and inducing long paused periods. X-PAK5 subcellular localization is regulated tightly, since coexpression with active Rac or Cdc42 induces its shuttling to actin-rich structures. Thus, X-PAK5 is a novel MT-associated protein that may communicate between the actin and MT networks during cellular responses to environmental conditions.


Development | 2004

SOX9 specifies the pyloric sphincter epithelium through mesenchymal-epithelial signals.

Brigitte Moniot; Sandrine Biau; Sandrine Faure; Corinne Nielsen; Philippe Berta; Drucilla J. Roberts; Pascal de Santa Barbara

Gastrointestinal (GI) development is highly conserved across vertebrates. Although several transcription factors and morphogenic proteins are involved in the molecular controls of GI development, the interplay between these factors is not fully understood. We report herein the expression pattern of Sox9 during GI development, and provide evidence that it functions, in part, to define the pyloric sphincter epithelium. SOX9 is expressed in the endoderm of the GI tract (with the exclusion of the gizzard) and its derivate organs, the lung and pancreas. Moreover, SOX9 is also expressed at the mesoderm of the pyloric sphincter, a structure that demarcates the gizzard from the duodenum. Using retroviral misexpression technique, we show that Sox9 expression in the pyloric sphincter is under the control of the BMP signaling pathway, known to play a key role in the development of this structure. By misexpressing SOX9 in the mesoderm of the gizzard, we show that SOX9 is able to transdifferentiate the adjacent gizzard epithelium into pyloric sphincter-like epithelium through the control of mesodermal-epithelial signals mediated in part by Gremlin (a modulator of the BMP pathway). Our results suggest that SOX9 is necessary and sufficient to specify the pyloric sphincter epithelial properties.


Developmental Dynamics | 2005

Bone morphogenetic protein signaling pathway plays multiple roles during gastrointestinal tract development

Pascal de Santa Barbara; Jerrell Williams; Allan M. Goldstein; Adele M. Doyle; Corinne Nielsen; Sarah Winfield; Sandrine Faure; Drucilla J. Roberts

The bone morphogenetic protein (BMP) signaling pathway plays an essential role during gastrointestinal (GI) tract development in vertebrates. In the present study, we use an antibody that recognizes the phosphorylated and activated form of Smad1, 5, and 8 to examine (by immunohistochemistry) the endogenous patterns of BMP signaling pathway activation in the developing GI tract. We show that the endogenous BMP signaling pathway is activated in the mesoderm, the endoderm, and the enteric nervous system (ENS) of the developing chick GI tract and is more widespread than BMP ligand expression patterns. Using an avian‐specific retroviral misexpression technique to activate or inhibit BMP signaling pathway activity in the mesoderm of the gut, we show that BMP activity is required for the pattern, the development, and the differentiation of all three tissue types of the gut: mesoderm (that forms the visceral smooth muscle), endoderm (that forms the epithelium), and ectoderm (that forms the ENS). These results demonstrate that BMP signaling is activated in all the tissue layers of the GI tract during the development and plays a role during interactions and reciprocal communications of these tissue layers. Developmental Dynamics 234:312–322, 2005.


Nature Genetics | 2014

Mutations in SGOL1 cause a novel cohesinopathy affecting heart and gut rhythm

Philippe Chetaille; Christoph Preuss; Silja Burkhard; Jean-Marc Côté; Christine Houde; Julie Castilloux; Jessica Piché; Natacha Gosset; Severine Leclerc; Florian Wünnemann; Maryse Thibeault; Carmen Gagnon; Antonella Galli; Elizabeth Tuck; Gilles R.X. Hickson; Nour El Amine; Ines Boufaied; Emmanuelle Lemyre; Pascal de Santa Barbara; Sandrine Faure; Anders Jonzon; Michel Cameron; Harry C. Dietz; Elena Gallo-McFarlane; D. Woodrow Benson; Claudia Moreau; Damian Labuda; Shing H. Zhan; Yaoqing Shen; Michèle Jomphe

The pacemaking activity of specialized tissues in the heart and gut results in lifelong rhythmic contractions. Here we describe a new syndrome characterized by Chronic Atrial and Intestinal Dysrhythmia, termed CAID syndrome, in 16 French Canadians and 1 Swede. We show that a single shared homozygous founder mutation in SGOL1, a component of the cohesin complex, causes CAID syndrome. Cultured dermal fibroblasts from affected individuals showed accelerated cell cycle progression, a higher rate of senescence and enhanced activation of TGF-β signaling. Karyotypes showed the typical railroad appearance of a centromeric cohesion defect. Tissues derived from affected individuals displayed pathological changes in both the enteric nervous system and smooth muscle. Morpholino-induced knockdown of sgol1 in zebrafish recapitulated the abnormalities seen in humans with CAID syndrome. Our findings identify CAID syndrome as a novel generalized dysrhythmia, suggesting a new role for SGOL1 and the cohesin complex in mediating the integrity of human cardiac and gut rhythm.


Cellular and Molecular Life Sciences | 2015

Mesenchymal-­epithelial interactions during digestive tract development and epithelial stem cell regeneration

Ludovic Le Guen; Stéphane Marchal; Sandrine Faure; Pascal de Santa Barbara

The gastrointestinal tract develops from a simple and uniform tube into a complex organ with specific differentiation patterns along the anterior–posterior and dorso-ventral axes of asymmetry. It is derived from all three germ layers and their cross-talk is important for the regulated development of fetal and adult gastrointestinal structures and organs. Signals from the adjacent mesoderm are essential for the morphogenesis of the overlying epithelium. These mesenchymal–epithelial interactions govern the development and regionalization of the different gastrointestinal epithelia and involve most of the key morphogens and signaling pathways, such as the Hedgehog, BMPs, Notch, WNT, HOX, SOX and FOXF cascades. Moreover, the mechanisms underlying mesenchyme differentiation into smooth muscle cells influence the regionalization of the gastrointestinal epithelium through interactions with the enteric nervous system. In the neonatal and adult gastrointestinal tract, mesenchymal–epithelial interactions are essential for the maintenance of the epithelial regionalization and digestive epithelial homeostasis. Disruption of these interactions is also associated with bowel dysfunction potentially leading to epithelial tumor development. In this review, we will discuss various aspects of the mesenchymal–epithelial interactions observed during digestive epithelium development and differentiation and also during epithelial stem cell regeneration.


Development | 2015

Enteric neural crest cells regulate vertebrate stomach patterning and differentiation.

Sandrine Faure; Jennifer McKey; Sébastien Sagnol; Pascal de Santa Barbara

In vertebrates, the digestive tract develops from a uniform structure where reciprocal epithelial-mesenchymal interactions pattern this complex organ into regions with specific morphologies and functions. Concomitant with these early patterning events, the primitive GI tract is colonized by the vagal enteric neural crest cells (vENCCs), a population of cells that will give rise to the enteric nervous system (ENS), the intrinsic innervation of the GI tract. The influence of vENCCs on early patterning and differentiation of the GI tract has never been evaluated. In this study, we report that a crucial number of vENCCs is required for proper chick stomach development, patterning and differentiation. We show that reducing the number of vENCCs by performing vENCC ablations induces sustained activation of the BMP and Notch pathways in the stomach mesenchyme and impairs smooth muscle development. A reduction in vENCCs also leads to the transdifferentiation of the stomach into a stomach-intestinal mixed phenotype. In addition, sustained Notch signaling activity in the stomach mesenchyme phenocopies the defects observed in vENCC-ablated stomachs, indicating that inhibition of the Notch signaling pathway is essential for stomach patterning and differentiation. Finally, we report that a crucial number of vENCCs is also required for maintenance of stomach identity and differentiation through inhibition of the Notch signaling pathway. Altogether, our data reveal that, through the regulation of mesenchyme identity, vENCCs act as a new mediator in the mesenchymal-epithelial interactions that control stomach development. Highlighted article: Enteric neural crest cells act as a new mediator in the mesenchymal-epithelial interactions that control proper patterning and differentiation in the chick stomach.


Gastroenterology | 2012

The RNA-Binding Protein RBPMS2 Regulates Development of Gastrointestinal Smooth Muscle

Cécile Notarnicola; Caroline Rouleau; Ludovic Le Guen; Anne Virsolvy; Sylvain Richard; Sandrine Faure; Pascal de Santa Barbara

BACKGROUND & AIMS Gastrointestinal development requires regulated differentiation of visceral smooth muscle cells (SMCs) and their contractile activities; alterations in these processes might lead to gastrointestinal neuromuscular disorders. Gastrointestinal SMC development and remodeling involves post-transcriptional modification of messenger RNA. We investigated the function of the RNA-binding protein for multiple splicing 2 (RBPMS2) during normal development of visceral smooth muscle in chicken and expression of its transcript in human pathophysiological conditions. METHODS We used avian replication-competent retroviral misexpression approaches to analyze the function of RBPMS2 in vivo and in primary cultures of chicken SMCs. We analyzed levels of RBPMS2 transcripts in colon samples from pediatric patients with Hirschsprungs disease and patients with chronic pseudo obstruction syndrome (CIPO) with megacystis. RESULTS RBPMS2 was expressed strongly during the early stage of visceral SMC development and quickly down-regulated in differentiated and mature SMCs. Misexpression of RBPMS2 in differentiated visceral SMCs induced their dedifferentiation and reduced their contractility by up-regulating expression of Noggin, which reduced activity of bone morphogenetic protein. Visceral smooth muscles from pediatric patients with CIPO expressed high levels of RBPMS2 transcripts, compared with smooth muscle from patients without this disorder. CONCLUSIONS Expression of RBPMS2 is present in visceral SMC precursors. Sustained expression of RBPMS2 inhibits the expression of markers of SMC differentiation by inhibiting bone morphogenetic protein activity, and stimulates SMC proliferation. RBPMS2 transcripts are up-regulated in patients with CIPO; alterations in RBPMS2 function might be involved in digestive motility disorders, particularly those characterized by the presence of muscular lesions (visceral myopathies).


Environment International | 2014

Environmental concentration of nonylphenol alters the development of urogenital and visceral organs in avian model.

Benoit Roig; Axelle Cadiere; Stephanie Bressieux; Sandrine Biau; Sandrine Faure; Pascal de Santa Barbara

Nonylphenol (NP) is an endocrine disruptor with harmful effects including feminization and carcinogenesis on various organisms. This substance is a degradation product of nonylphenol ethoxylates (NPEO) that is used in several industrial and agricultural processes. In this paper, we examined the assessment of NP exposure on chick embryo development, using a concentration consistent with the environmental concentrations of NP. With this aim, NP (between 0.1 and 50 μg/egg) was injected into the yolk of egg through a small needle hole in the shell. We report the effect of NP on chick reproductive system development although the effect we observed is lower than those observed by exposition to other endocrine disruptors. However, histological analysis highlighted a decrease of intraluminal seminiferous surface area in 64.12% of case (P=0.0086) and an heterogeneous organization of the renal tubules when 10 μg/egg were injected. Moreover, an impairment of liver development with an abnormal bile spillage was observed when higher concentration of NP was injected (50 μg/egg).


Experimental and Molecular Pathology | 2013

High expression of the RNA-binding protein RBPMS2 in gastrointestinal stromal tumors.

Ilona Hapkova; Josef Skarda; Caroline Rouleau; An Thys; Cécile Notarnicola; Maria Janikova; Florence Bernex; Miroslav Rypka; Jean-Marie Vanderwinden; Sandrine Faure; Jaroslav Vesely; Pascal de Santa Barbara

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract and are often associated with KIT or PDGFRA gene mutations. GIST cells might arise from the interstitial cells of Cajal (ICCs) or from a mesenchymal precursor that is common to ICCs and smooth muscle cells (SMCs). Here, we analyzed the mRNA and protein expression of RNA-Binding Protein with Multiple Splicing-2 (RBPMS2), an early marker of gastrointestinal SMC precursors, in human GISTs (n=23) by in situ hybridization, quantitative RT-PCR analysis and immunohistochemistry. The mean RBPMS2 mRNA level in GISTs was 42-fold higher than in control gastrointestinal samples (p<0.001). RBPMS2 expression was not correlated with KIT and PDGFRA expression levels, but was higher in GISTs harboring KIT mutations than in tumors with wild type KIT and PDGFRA or in GISTs with PDGFRA mutations that were characterized by the lowest RBPMS2 levels. Moreover, RBPMS2 levels were 64-fold higher in GIST samples with high risk of aggressive behavior than in adult control gastrointestinal samples and 6.2-fold higher in high risk than in low risk GIST specimens. RBPMS2 protein level was high in 87% of the studied GISTs independently of their histological classification. Finally, by inhibiting the KIT signaling pathway in GIST882 cells, we show that RBPMS2 expression is independent of KIT activation. In conclusion, RBPMS2 is up-regulated in GISTs compared to normal adult gastrointestinal tissues, indicating that RBPMS2 might represent a new diagnostic marker for GISTs and a potential target for cancer therapy.

Collaboration


Dive into the Sandrine Faure's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathalie Morin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Philippe Fort

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer McKey

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Ludovic Le Guen

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge