Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanket A. Deshmukh is active.

Publication


Featured researches published by Sanket A. Deshmukh.


Science | 2015

Macroscale superlubricity enabled by graphene nanoscroll formation

Diana Berman; Sanket A. Deshmukh; Subramanian K. R. S. Sankaranarayanan; A. Erdemir; Anirudha V. Sumant

Slip sliding away Many applications would benefit from ultralow friction conditions to minimize wear on the moving parts such as in hard drives or engines. On the very small scale, ultralow friction has been observed with graphite as a lubricant. Berman et al. achieved superlubricity using graphene in combination with crystalline diamond nanoparticles and diamondlike carbon (see the Perspective by Hone and Carpick). Simulations showed that sliding of the graphene patches around the tiny nanodiamond particles led to nanoscrolls with reduced contact area that slide easily against the amorphous diamondlike carbon surface. Science, this issue p. 1118; see also p. 1087 Nanodiamonds wrapped with graphene sheets lead to ultralow friction against a diamondlike carbon surface. [Also see Perspective by Hone and Carpick] Friction and wear remain as the primary modes of mechanical energy dissipation in moving mechanical assemblies; thus, it is desirable to minimize friction in a number of applications. We demonstrate that superlubricity can be realized at engineering scale when graphene is used in combination with nanodiamond particles and diamondlike carbon (DLC). Macroscopic superlubricity originates because graphene patches at a sliding interface wrap around nanodiamonds to form nanoscrolls with reduced contact area that slide against the DLC surface, achieving an incommensurate contact and substantially reduced coefficient of friction (~0.004). Atomistic simulations elucidate the overall mechanism and mesoscopic link bridging the nanoscale mechanics and macroscopic experimental observations.


Journal of Physical Chemistry B | 2012

Role of solvation dynamics and local ordering of water in inducing conformational transitions in poly(N-isopropylacrylamide) oligomers through the LCST.

Sanket A. Deshmukh; Subramanian K. R. S. Sankaranarayanan; Kamlesh J. Suthar; Derrick C. Mancini

Conformational transitions in thermo-sensitive polymers are critical in determining their functional properties. The atomistic origin of polymer collapse at the lower critical solution temperature (LCST) remains a fundamental and challenging problem in polymer science. Here, molecular dynamics simulations are used to establish the role of solvation dynamics and local ordering of water in inducing conformational transitions in isotactic-rich poly(N-isopropylacrylamide) (PNIPAM) oligomers when the temperature is changed through the LCST. Simulated atomic trajectories are used to identify stable conformations of the water-molecule network in the vicinity of polymer segments, as a function of the polymer chain length. The dynamics of the conformational evolution of the polymer chain within its surrounding water molecules is evaluated using various structural and dynamical correlation functions. Around the polymer, water forms cage-like structures with hydrogen bonds. Such structures form at temperatures both below and above the LCST. The structures formed at temperatures above LCST, however, are significantly different from those formed below LCST. Short oligomers consisting of 3, 5, and 10 monomer units (3-, 5-, and 10-mer), are characterized by significantly higher hydration level (water per monomer ~ 16). Increasing the temperature from 278 to 310 K does not perturb the structure of water around the short oligomers. In the case of 3-, 5-, and 10-mer, a distinct coil-to-globule transition was not observed when the temperature was raised from 278 to 310 K. For a PNIPAM polymer chain consisting of 30 monomeric units (30-mer), however, there exist significantly different conformations corresponding to two distinct temperature regimes. Below LCST, the water molecules in the first hydration layer (~12) around hydrophilic groups arrange themselves in a specific ordered manner by forming a hydrogen-bonded network with the polymer, resulting in a solvated polymer acting as hydrophilic. Above LCST, this arrangement of water is no longer stable, and the hydrophobic interactions become dominant, which contributes to the collapse of the polymer. Thus, this study provides atomic-scale insights into the role of solvation dynamics in inducing coil-to-globule phase transitions through the LCST for thermo-sensitive polymers like PNIPAM.


Nature Materials | 2015

Subnanometre ligand-shell asymmetry leads to Janus-like nanoparticle membranes

Zhang Jiang; Jinbo He; Sanket A. Deshmukh; Pongsakorn Kanjanaboos; Ganesh Kamath; Yifan Wang; Subramanian K. R. S. Sankaranarayanan; Jin Wang; Heinrich M. Jaeger; Xiao-Min Lin

Self-assembly of nanoparticles at fluid interfaces has emerged as a simple yet efficient way to create two-dimensional membranes with tunable properties. In these membranes, inorganic nanoparticles are coated with a shell of organic ligands that interlock as spacers and provide tensile strength. Although curvature due to gradients in lipid-bilayer composition and protein scaffolding is a key feature of many biological membranes, creating gradients in nanoparticle membranes has been difficult. Here, we show by X-ray scattering that nanoparticle membranes formed at air/water interfaces exhibit a small but significant ∼6 Å difference in average ligand-shell thickness between their two sides. This affects surface-enhanced Raman scattering and can be used to fold detached free-standing membranes into tubes by exposure to electron beams. Molecular dynamics simulations elucidate the roles of ligand coverage and mobility in producing and maintaining this asymmetry. Understanding this Janus-like membrane asymmetry opens up new avenues for designing nanoparticle superstructures.


Journal of Physical Chemistry B | 2012

Vibrational Spectra of Proximal Water in a Thermo-Sensitive Polymer Undergoing Conformational Transition Across the Lower Critical Solution Temperature

Sanket A. Deshmukh; Subramanian K. R. S. Sankaranarayanan; Derrick C. Mancini

The vibrational spectrum of water near a thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAM) undergoing conformational transition through the lower critical solution temperature (LCST) is calculated using molecular dynamics simulations. The characteristic structural features observed at the atomic scale for these proximal water molecules in a solvated polymer chain while undergoing the conformational transition are strongly correlated to their vibrational densities of states. Comparison of the vibrational spectrum below LCST for the proximal water with the vibrational spectrum obtained for bulk water reveals a significant fraction of the hydrogen bonding between the proximal water molecules and the polymer side groups. Hydrogen-bonded bridges of water molecules are formed between two adjacent and alternate monomers. This network of hydrogen bonding results in formation of locally ordered water molecules at temperatures below the LCST. Analysis of the simulation trajectories confirms the presence of a quasi-stable solvation structure near the PNIPAM. The calculated vibrational spectra for proximal water above the LCST suggest significantly reduced hydrogen bonding with the polymer and indicate a reduction in the structural stability of proximal water around a collapsed polymer chain. Systematic trends in the observed peak intensities and frequency shifts at the low- and high-frequency ends of the spectrum can be correlated with the structural and dynamical changes of water molecules below and above the LCST transition, respectively, for various polymer chain lengths. The simulations reveal that, compared to bulk water, the libration bands are blue shifted and OH stretch bands red shifted for water in proximity to PNIPAM with 30 monomer units below the LCST. The simulations suggest that vibrational spectra can be used as a predictive tool for quantifying atomic-scale structural transitions in solvation of thermo-sensitive polymers such as PNIPAM.


Physical Chemistry Chemical Physics | 2012

Atomic scale characterization of interfacial water near an oxide surface using molecular dynamics simulations

Sanket A. Deshmukh; Subramanian K. R. S. Sankaranarayanan

Atomic scale characterization of the structure and dynamics of confined water molecules located near the metal oxide-aqueous interface is carried out using molecular dynamics simulations. Proximity effects on water molecules (H(2)O) near a magnesium oxide surface (MgO(100)) at room temperature are evaluated based on various structural and dynamical correlation functions. Translational and orientational order parameters are used to quantify the extent of ordering of water molecules near the oxide surface. There is significant ordering of water molecules in the two layers close to the oxide interface and the extent of ordering decreases with increasing distance from the oxide-water interface. The characteristic structural features of proximal water molecules near oxide-aqueous interfaces are strongly correlated to their vibrational densities of states. Systematic trends in libration, bending, and stretching bands are correlated with local ordering of water molecules and the hydrogen-bonding network. We find that restricted transverse oscillations result in larger blue shifts in O-O-O bending and O-O stretching bands for water molecules having increased proximity to the interface. The O-H stretching band is red-shifted whereas the libration bands for proximal water are blue shifted with respect to bulk water; the extent of shifts are sensitive to the interface proximity, their local confinement and their hydrogen bonding status.


Nature Communications | 2016

Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale

Diana Berman; Sanket A. Deshmukh; Badri Narayanan; Subramanian K. R. S. Sankaranarayanan; Zhong Yan; Alexander A. Balandin; Alexander V. Zinovev; Daniel Rosenmann; Anirudha V. Sumant

The degradation of intrinsic properties of graphene during the transfer process constitutes a major challenge in graphene device fabrication, stimulating the need for direct growth of graphene on dielectric substrates. Previous attempts of metal-induced transformation of diamond and silicon carbide into graphene suffers from metal contamination and inability to scale graphene growth over large area. Here, we introduce a direct approach to transform polycrystalline diamond into high-quality graphene layers on wafer scale (4 inch in diameter) using a rapid thermal annealing process facilitated by a nickel, Ni thin film catalyst on top. We show that the process can be tuned to grow single or multilayer graphene with good electronic properties. Molecular dynamics simulations elucidate the mechanism of graphene growth on polycrystalline diamond. In addition, we demonstrate the lateral growth of free-standing graphene over micron-sized pre-fabricated holes, opening exciting opportunities for future graphene/diamond-based electronics.


Nature Communications | 2016

Water ordering controls the dynamic equilibrium of micelle–fibre formation in self-assembly of peptide amphiphiles

Sanket A. Deshmukh; Lee A. Solomon; Ganesh Kamath; H. Christopher Fry; Subramanian K. R. S. Sankaranarayanan

Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides remains elusive. Here, we use a multistage atomistic-coarse-grained approach, complemented by circular dichroism/infrared spectroscopy and dynamic light scattering experiments to highlight the dual nature of water in driving the self-assembly of peptide amphiphiles (PAs). We show computationally that water cage formation and breakage near the hydrophobic groups control the fusion dynamics and aggregation of PAs in the micellar stage. Simulations also suggest that enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards the fibre phase and stimulates structure and order during the PA assembly into nanofibres. Experiments validate our simulation findings; the measured infrared O–H bond stretching frequency is reminiscent of an ice-like bond which suggests that the solvated water becomes increasingly ordered with time in the assembled peptide network, thus shedding light on the role of water in a self-assembly process.


Soft Matter | 2014

Comparison of the interfacial dynamics of water sandwiched between static and free-standing fully flexible graphene sheets.

Sanket A. Deshmukh; Ganesh Kamath; Subramanian K. R. S. Sankaranarayanan

Classical molecular dynamics simulations are used to present a detailed atomistic picture of the instantaneous local structures of water and the structural evolution of stationary and dynamically evolving graphene-water interfaces. The confinement effects are strongly coupled to the nature of the interface, which eventually governs its nanoscopic structural arrangements and interface dynamics. We show that the structure, transport properties, and vibrational densities of states of proximal water molecules are strongly correlated with the nature of the graphene-water interface. We identify and correlate features in vibrational spectra with characteristic structural features observed at the atomic scale for the confined water molecules near a stationary and dynamically evolving hydrophobic surface such as graphene. Our simulations indicate that the local orientation, ordering, and solvation dynamics of interfacial water molecules are a strong function of the graphene slit-width, which is controlled by the nature of the interface (fully flexible vs. static). A monotonic decrease in local ordering with increasing slit-width was observed for the static graphene-water interface, whereas a non-monotonic variation was seen for its fully flexible counterpart. The simulation results offer useful insights into the effect of interfacial dynamics in defining the structure and transport properties at graphene-aqueous media interfaces. Finally these simulations provide a molecular level interpretation of the differential confinement effects arising from the dynamically evolving graphene-water interface.


Journal of Physical Chemistry Letters | 2016

In Situ 3D Imaging of Catalysis Induced Strain in Gold Nanoparticles.

Andrew Ulvestad; Kiran Sasikumar; Jong-Woo Kim; Ross Harder; Evan R. Maxey; Jesse N. Clark; Badri Narayanan; Sanket A. Deshmukh; Nicola Ferrier; Paul Mulvaney; Subramanian K. R. S. Sankaranarayanan; Oleg Shpyrko

Multielectron transfer processes are crucially important in energy and biological science but require favorable catalysts to achieve fast kinetics. Nanostructuring catalysts can dramatically improve their properties, which can be difficult to understand due to strain- and size-dependent thermodynamics, the influence of defects, and substrate-dependent activities. Here, we report three-dimensional (3D) imaging of single gold nanoparticles during catalysis of ascorbic acid decomposition using Bragg coherent diffractive imaging (BCDI). Local strains were measured in single nanoparticles and modeled using reactive molecular dynamics (RMD) simulations and finite element analysis (FEA) simulations. RMD reveals the pathway for local strain generation in the gold lattice: chemisorption of hydroxyl ions. FEA reveals that the RMD results are transferable to the nanocrystal sizes studied in the experiment. Our study probes the strain-activity connection and opens a powerful avenue for theoretical and experimental studies of nanocrystal catalysis.


Scientific Reports | 2015

Femtosecond Laser Pulse Driven Melting in Gold Nanorod Aqueous Colloidal Suspension: Identification of a Transition from Stretched to Exponential Kinetics

Yuelin Li; Zhang Jiang; Xiao Min Lin; Haidan Wen; Donald A. Walko; Sanket A. Deshmukh; Ram Subbaraman; Subramanian K. R. S. Sankaranarayanan; Stephen K. Gray; Phay Ho

Many potential industrial, medical, and environmental applications of metal nanorods rely on the physics and resultant kinetics and dynamics of the interaction of these particles with light. We report a surprising kinetics transition in the global melting of femtosecond laser-driven gold nanorod aqueous colloidal suspension. At low laser intensity, the melting exhibits a stretched exponential kinetics, which abruptly transforms into a compressed exponential kinetics when the laser intensity is raised. It is found the relative formation and reduction rate of intermediate shapes play a key role in the transition. Supported by both molecular dynamics simulations and a kinetic model, the behavior is traced back to the persistent heterogeneous nature of the shape dependence of the energy uptake, dissipation and melting of individual nanoparticles. These results could have significant implications for various applications such as water purification and electrolytes for energy storage that involve heat transport between metal nanorod ensembles and surrounding solvents.

Collaboration


Dive into the Sanket A. Deshmukh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derrick C. Mancini

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Badri Narayanan

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Anirudha V. Sumant

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Berman

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Erdemir

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kamlesh J. Suthar

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge