Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Santiago Guerrero is active.

Publication


Featured researches published by Santiago Guerrero.


Viruses | 2015

HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

Santiago Guerrero; Julien Batisse; Camille Libre; Serena Bernacchi; Roland Marquet; Jean-Christophe Paillart

Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1) uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication.


Journal of Virology | 2013

APOBEC3G impairs the multimerization of the HIV-1 Vif protein in living cells

Julien Batisse; Santiago Guerrero; Serena Bernacchi; Ludovic Richert; Julien Godet; Valérie Goldschmidt; Yves Mély; Roland Marquet; Hugues de Rocquigny; Jean-Christophe Paillart

ABSTRACT The HIV-1 viral infectivity factor (Vif) is a small basic protein essential for viral fitness and pathogenicity. Vif allows productive infection in nonpermissive cells, including most natural HIV-1 target cells, by counteracting the cellular cytosine deaminases APOBEC3G (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G [A3G]) and A3F. Vif is also associated with the viral assembly complex and packaged into viral particles through interactions with the viral genomic RNA and the nucleocapsid domain of Pr55Gag. Recently, we showed that oligomerization of Vif into high-molecular-mass complexes induces Vif folding and influences its binding to high-affinity RNA binding sites present in the HIV genomic RNA. To get further insight into the role of Vif multimerization in viral assembly and A3G repression, we used fluorescence lifetime imaging microscopy (FLIM)- and fluorescence resonance energy transfer (FRET)-based assays to investigate Vif-Vif interactions in living cells. By using two N-terminally tagged Vif proteins, we show that Vif-Vif interactions occur in living cells. This oligomerization is strongly reduced when the putative Vif multimerization domain (161PPLP164) is mutated, indicating that this domain is crucial, but that regions outside this motif also participate in Vif oligomerization. When coexpressed together with Pr55Gag, Vif is largely relocated to the cell membrane, where Vif oligomerization also occurs. Interestingly, wild-type A3G strongly interferes with Vif multimerization, contrary to an A3G mutant that does not bind to Vif. These findings confirm that Vif oligomerization occurs in living cells partly through its C-terminal motif and suggest that A3G may target and perturb the Vif oligomerization state to limit its functions in the cell.


Virus Research | 2012

The role of Vif oligomerization and RNA chaperone activity in HIV-1 replication

Julien Batisse; Santiago Guerrero; Serena Bernacchi; Dona Sleiman; Caroline Gabus; Jean-Luc Darlix; Roland Marquet; Carine Tisné; Jean-Christophe Paillart

The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells that involve most natural HIV-1 target cells. Vif counteracts the packaging of two cellular cytidine deaminases named APOBEC3G (A3G) and A3F by diverse mechanisms including the recruitment of an E3 ubiquitin ligase complex and the proteasomal degradation of A3G/A3F, the inhibition of A3G mRNA translation or by a direct competition mechanism. In addition, Vif appears to be an active partner of the late steps of viral replication by participating in virus assembly and Gag processing, thus regulating the final stage of virion formation notably genomic RNA dimerization and by inhibiting the initiation of reverse transcription. Vif is a small pleiotropic protein with multiple domains, and recent studies highlighted the importance of Vif conformation and flexibility in counteracting A3G and in binding RNA. In this review, we will focus on the oligomerization and RNA chaperone properties of Vif and show that the intrinsic disordered nature of some Vif domains could play an important role in virus assembly and replication. Experimental evidence demonstrating the RNA chaperone activity of Vif will be presented.


RNA Biology | 2014

Characterization of RNA binding and chaperoning activities of HIV-1 Vif protein. Importance of the C-terminal unstructured tail.

Dona Sleiman; Serena Bernacchi; Santiago Guerrero; Franck Brachet; Valéry Larue; Jean-Christophe Paillart; Carine Tisné

The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells, containing the cellular anti-HIV defense cytosine deaminases APOBEC3 (A3G and A3F). Vif neutralizes the antiviral activities of the APOBEC3G/F by diverse mechanisms including their degradation through the ubiquitin/proteasome pathway and their translational inhibition. In addition, Vif appears to be an active partner of the late steps of viral replication by interacting with Pr55Gag, reverse transcriptase and genomic RNA. Here, we expressed and purified full-length and truncated Vif proteins, and analyzed their RNA binding and chaperone properties. First, we showed by CD and NMR spectroscopies that the N-terminal domain of Vif is highly structured in solution, whereas the C-terminal domain remains mainly unfolded. Both domains exhibited substantial RNA binding capacities with dissociation constants in the nanomolar range, whereas the basic unfolded C-terminal domain of Vif was responsible in part for its RNA chaperone activity. Second, we showed by NMR chemical shift mapping that Vif and NCp7 share the same binding sites on tRNALys3, the primer of HIV-1 reverse transcriptase. Finally, our results indicate that Vif has potent RNA chaperone activity and provide direct evidence for an important role of the unstructured C-terminal domain of Vif in this capacity.


Nature Communications | 2017

A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells

Hyun Ju Lee; Deniz Bartsch; Cally Xiao; Santiago Guerrero; Gaurav Ahuja; Christina Schindler; James J. Moresco; John R. Yates; Fátima Gebauer; Hisham Bazzi; Christoph Dieterich; Leo Kurian; David Vilchez

While the transcriptional network of human embryonic stem cells (hESCs) has been extensively studied, relatively little is known about how post-transcriptional modulations determine hESC function. RNA-binding proteins play central roles in RNA regulation, including translation and turnover. Here we show that the RNA-binding protein CSDE1 (cold shock domain containing E1) is highly expressed in hESCs to maintain their undifferentiated state and prevent default neural fate. Notably, loss of CSDE1 accelerates neural differentiation and potentiates neurogenesis. Conversely, ectopic expression of CSDE1 impairs neural differentiation. We find that CSDE1 post-transcriptionally modulates core components of multiple regulatory nodes of hESC identity, neuroectoderm commitment and neurogenesis. Among these key pro-neural/neuronal factors, CSDE1 binds fatty acid binding protein 7 (FABP7) and vimentin (VIM) mRNAs, as well as transcripts involved in neuron projection development regulating their stability and translation. Thus, our results uncover CSDE1 as a central post-transcriptional regulator of hESC identity and neurogenesis.Unlike transcriptional regulation of hESC identity, little is known post-transcriptionally. Here, the authors show that the RNA binding protein CSDE1 regulates core components of hESC identity, neurectoderm commitment and neurogenesis to maintain pluripotency and prevent neural differentiation.


PLOS ONE | 2017

UNR/CDSE1 expression as prognosis biomarker in resectable pancreatic ductal adenocarcinoma patients: A proof-of-concept

Javier Martinez-Useros; Tihomir Georgiev-Hristov; María Jesús Fernández-Aceñero; Aurea Borrero-Palacios; Alberto Indacochea; Santiago Guerrero; Weiyao Li; Arancha Cebrián; Teresa Gómez del Pulgar; Alberto Puime-Otin; Laura del Puerto-Nevado; María Rodríguez-Remírez; N. Perez; Angel Celdrán; Fátima Gebauer; Jesús García-Foncillas

Pancreatic ductal adenocarcinoma is an aggressive form of pancreatic cancer and the fourth leading cause of cancer-related death. When possible, curative approaches are based on surgical resection, though not every patient is a candidate for surgery. There are clinical guidelines for the management of these patients that offer different treatment options depending on the clinical and pathologic characteristics. However, the survival rates seen in this kind of patients are still low. The CDSE1 gene is located upstream of NRAS and encodes an RNA-binding protein termed UNR. The aim of this study was to analyze UNR expression and its correlation with outcome in patients with resectable pancreatic ductal adenocarcinoma (PDAC). For this, samples from resectable PDAC patients who underwent duodenopancreatectomy were used to evaluate UNR protein expression by immunohistochemistry using a tissue microarray. Here, we observed that low UNR expression was significantly associated with shorter progression-free survival after surgery (P = 0.010). Moreover, this prognostic marker remained significant after Cox proportional hazards model (P = 0.036). We further studied the role of CDSE1 expression in patient’s prognosis using data from public repositories (GEO and TGCA), confirming our results. Interestingly, CDSE1 expression correlated with that of genes characteristic of an immunogenic molecular subtype of pancreatic cancer. Based on these findings, UNR may be considered a potential prognostic biomarker for resectable PDAC and may serve to guide subsequent adjuvant treatment decisions.


International Journal of Molecular Sciences | 2017

State of Art of Cancer Pharmacogenomics in Latin American Populations

Andrés López-Cortés; Santiago Guerrero; María Redal; Angel Alvarado; Luis Quiñones

Over the past decades, several studies have shown that tumor-related somatic and germline alterations predicts tumor prognosis, drug response and toxicity. Latin American populations present a vast geno-phenotypic diversity due to the great interethnic and interracial mixing. This genetic flow leads to the appearance of complex characteristics that allow individuals to adapt to endemic environments, such as high altitude or extreme tropical weather. These genetic changes, most of them subtle and unexplored, could establish a mutational profile to develop new pharmacogenomic therapies specific for Latin American populations. In this review, we present the current status of research on somatic and germline alterations in Latin America compared to those found in Caucasian and Asian populations.


Scientific Reports | 2016

Translational regulation of APOBEC3G mRNA by Vif requires its 5′UTR and contributes to restoring HIV-1 infectivity

Santiago Guerrero; Camille Libre; Julien Batisse; Gaëlle Mercenne; Delphine Richer; Géraldine Laumond; Thomas Decoville; Christiane Moog; Roland Marquet; Jean-Christophe Paillart

The essential HIV-1 viral infectivity factor (Vif) allows productive infection of non-permissive cells expressing cytidine deaminases APOBEC3G (A3G) and A3F by decreasing their cellular level, and preventing their incorporation into virions. Unlike the Vif-induced degradation of A3G, the functional role of the inhibition of A3G translation by Vif remained unclear. Here, we show that two stem-loop structures within the 5′-untranslated region of A3G mRNA are crucial for translation inhibition by Vif in cells, and most Vif alleles neutralize A3G translation efficiently. Interestingly, K26R mutation in Vif abolishes degradation of A3G by the proteasome but has no effect at the translational level, indicating these two pathways are independent. These two mechanisms, proteasomal degradation and translational inhibition, similarly contribute to decrease the cellular level of A3G by Vif and to prevent its incorporation into virions. Importantly, inhibition of A3G translation is sufficient to partially restore viral infectivity in the absence of proteosomal degradation. These findings demonstrate that HIV-1 has evolved redundant mechanisms to specifically inhibit the potent antiviral activity of A3G.


PLOS ONE | 2016

Analysis and Implementation of an Electronic Laboratory Notebook in a Biomedical Research Institute

Santiago Guerrero; Gwendal Dujardin; A. Cabrera-Andrade; César Paz-y-Miño; Alberto Indacochea; Marta Inglés-Ferrándiz; Hima Priyanka Nadimpalli; Nicola Collu; Yann Dublanche; Ismael De Mingo; David Camargo

Electronic laboratory notebooks (ELNs) will probably replace paper laboratory notebooks (PLNs) in academic research due to their advantages in data recording, sharing and security. Despite several reports describing technical characteristics of ELNs and their advantages over PLNs, no study has directly tested ELN performance among researchers. In addition, the usage of tablet-based devices or wearable technology as ELN complements has never been explored in the field. To implement an ELN in our biomedical research institute, here we first present a technical comparison of six ELNs using 42 parameters. Based on this, we chose two ELNs, which were tested by 28 scientists for a 3-month period and by 80 students via hands-on practical exercises. Second, we provide two survey-based studies aimed to compare these two ELNs (PerkinElmer Elements and Microsoft OneNote) and to analyze the use of tablet-based devices. We finally explore the advantages of using wearable technology as ELNs tools. Among the ELNs tested, we found that OneNote presents almost all parameters evaluated (39/42) and both surveyed groups preferred OneNote as an ELN solution. In addition, 80% of the surveyed scientists reported that tablet-based devices improved the use of ELNs in different respects. We also describe the advantages of using OneNote application for Apple Watch as an ELN wearable complement. This work defines essential features of ELNs that could be used to improve ELN implementation and software development.


BioMed Research International | 2017

Genotyping the High Altitude Mestizo Ecuadorian Population Affected with Prostate Cancer

Andrés López-Cortés; A. Cabrera-Andrade; Carolina Salazar-Ruales; Ana Karina Zambrano; Santiago Guerrero; Patricia Guevara; Paola E. Leone; César Paz-y-Miño

Prostate cancer (PC) is the second most commonly diagnosed type of cancer in males with 1,114,072 new cases in 2015. The MTHFR enzyme acts in the folate metabolism, which is essential in methylation and synthesis of nucleic acids. MTHFR C677T alters homocysteine levels and folate assimilation associated with DNA damage. Androgens play essential roles in prostate growth. The SRD5A2 enzyme metabolizes testosterone and the V89L polymorphism reduces in vivo SRD5A2 activity. The androgen receptor gene codes for a three-domain protein that contains two polymorphic trinucleotide repeats (CAG, GGC). Therefore, it is essential to know how PC risk is associated with clinical features and polymorphisms in high altitude Ecuadorian mestizo populations. We analyzed 480 healthy and 326 affected men from our three retrospective case-control studies. We found significant association between MTHFR C/T (odds ratio [OR] = 2.2; P = 0.009), MTHFR C/T+T/T (OR = 2.22; P = 0.009), and PC. The SRD5A2 A49T substitution was associated with higher pTNM stage (OR = 2.88; P = 0.039) and elevated Gleason grade (OR = 3.15; P = 0.004). Additionally, patients with ≤21 CAG repeats have an increased risk of developing PC (OR = 2.99; P < 0.001). In conclusion, genotype polymorphism studies are important to characterize genetic variations in high altitude mestizo populations.

Collaboration


Dive into the Santiago Guerrero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julien Batisse

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Roland Marquet

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrés López-Cortés

Pontificia Universidad Católica del Ecuador

View shared research outputs
Top Co-Authors

Avatar

A. Cabrera-Andrade

Universidad de las Américas Puebla

View shared research outputs
Top Co-Authors

Avatar

César Paz-y-Miño

Universidad de las Américas Puebla

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola E. Leone

Pontificia Universidad Católica del Ecuador

View shared research outputs
Researchain Logo
Decentralizing Knowledge