Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Serena Bernacchi is active.

Publication


Featured researches published by Serena Bernacchi.


Nucleic Acids Research | 2001

Exciton interaction in molecular beacons: a sensitive sensor for short range modifications of the nucleic acid structure

Serena Bernacchi; Yves Mély

Molecular beacons are hairpin-shaped, single-stranded oligonucleotides constituting sensitive fluorescent DNA probes widely used to report the presence of specific nucleic acids. In its closed form the stem of the hairpin holds the fluorophore covalently attached to one end, close to the quencher, which is covalently attached to the other end. Here we report that in the closed form the fluorophore and the quencher form a ground state intramolecular heterodimer whose spectral properties can be described by exciton theory. Formation of the heterodimers was found to be poorly sensitive to the stem sequence, the respective positions of the dyes and the nature of the nucleic acid (DNA or RNA). The heterodimer allows strong coupling between the transition dipoles of the two chromophores, leading to dramatic changes in the absorption spectrum that are not compatible with a Förster-type fluorescence resonance energy transfer (FRET) mechanism. The excitonic heterodimer and its associated absorption spectrum are extremely sensitive to the orientation of and distance between the dyes. Accordingly, the application of molecular beacons can be extended to monitoring short range modifications of the stem structure. Moreover, the excitonic interaction was also found to operate for doubly end-labeled duplexes.


Microbiology and Molecular Biology Reviews | 2009

Tumultuous Relationship between the Human Immunodeficiency Virus Type 1 Viral Infectivity Factor (Vif) and the Human APOBEC-3G and APOBEC-3F Restriction Factors

Simon Henriet; Gaëlle Mercenne; Serena Bernacchi; Jean-Christophe Paillart; Roland Marquet

SUMMARY The viral infectivity factor (Vif) is dispensable for human immunodeficiency virus type 1 (HIV-1) replication in so-called permissive cells but is required for replication in nonpermissive cell lines and for pathogenesis. Virions produced in the absence of Vif have an aberrant morphology and an unstable core and are unable to complete reverse transcription. Recent studies demonstrated that human APOBEC-3G (hA3G) and APOBEC-3F (hA3F), which are selectively expressed in nonpermissive cells, possess strong anti-HIV-1 activity and are sufficient to confer a nonpermissive phenotype. Vif induces the degradation of hA3G and hA3F, suggesting that its main function is to counteract these cellular factors. Most studies focused on the hypermutation induced by the cytidine deaminase activity of hA3G and hA3F and on their Vif-induced degradation by the proteasome. However, recent studies suggested that several mechanisms are involved both in the antiviral activity of hA3G and hA3F and in the way Vif counteracts these antiviral factors. Attempts to reconcile the studies involving Vif in virus assembly and stability with these recent findings suggest that hA3G and hA3F partially exert their antiviral activity independently of their catalytic activity by destabilizing the viral core and the reverse transcription complex, possibly by interfering with the assembly and/or maturation of the viral particles. Vif could then counteract hA3G and hA3F by excluding them from the viral assembly intermediates through competition for the viral genomic RNA, by regulating the proteolytic processing of Pr55Gag, by enhancing the efficiency of the reverse transcription process, and by inhibiting the enzymatic activities of hA3G and hA3F.


Biochimica et Biophysica Acta | 2000

Gene transfer by cationic surfactants is essentially limited by the trapping of the surfactant/DNA complexes onto the cell membrane: a fluorescence investigation

Jean-Pierre Clamme; Serena Bernacchi; Constance Vuilleumier; Guy Duportail; Yves Mély

The interaction between complexes of plasmid DNA with cetyltrimethylammonium bromide (CTAB) and L929 fibroblasts was first examined using confocal microscopy. The complexes labeled with the DNA intercalator, YOYO-1, were found to be trapped onto the external face of the plasma membrane; a feature that may constitute a major limiting step in transfection. Moreover, since no cytotoxic effect appeared in these conditions, we further inferred that the CTAB molecules remained bound to the DNA. The interaction of the complexes with the membranes was best modeled with neutral vesicles. From anisotropy thermotropic curves of DPHpPC-labeled vesicles and fluorescence resonance energy transfer measurements between these vesicles and YOYO-labeled complexes, we evidenced that the binding of the complexes to the vesicle surface opened the micelle-like domains and unwound DNA. However, DNA was not released but remained stably bound via electrostatic interactions to the CTAB molecules incorporated in the external liposome leaflet. Consequently, the large diameter of the unwound plasmid DNA is likely the major factor that precludes its internalization into the cells by endocytosis. In contrast, anionic vesicles that mimic the cytoplasmic facing monolayer of the plasma membrane rapidly released DNA from the complex. This may explain the previously reported high transfection efficiency of DNA complexed with liposomes composed of neutral lipids and cationic surfactants, since the latter may destabilize the endosomal membrane and induce the release of DNA in the cytoplasm.


Nucleic Acids Research | 2010

HIV-1 Vif binds to APOBEC3G mRNA and inhibits its translation

Gaëlle Mercenne; Serena Bernacchi; Delphine Richer; Guillaume Bec; Simon Henriet; Jean-Christophe Paillart; Roland Marquet

The HIV-1 viral infectivity factor (Vif) allows productive infection of non-permissive cells (including most natural HIV-1 targets) by counteracting the cellular cytosine deaminases APOBEC-3G (hA3G) and hA3F. The Vif-induced degradation of these restriction factors by the proteasome has been extensively studied, but little is known about the translational repression of hA3G and hA3F by Vif, which has also been proposed to participate in Vif function. Here, we studied Vif binding to hA3G mRNA and its role in translational repression. Filter binding assays and fluorescence titration curves revealed that Vif tightly binds to hA3G mRNA. Vif overall binding affinity was higher for the 3′UTR than for the 5′UTR, even though this region contained at least one high affinity Vif binding site (apparent Kd = 27 ± 6 nM). Several Vif binding sites were identified in 5′ and 3′UTRs using RNase footprinting. In vitro translation evidenced that Vif inhibited hA3G translation by two mechanisms: a main time-independent process requiring the 5′UTR and an additional time-dependent, UTR-independent process. Results using a Vif protein mutated in the multimerization domain suggested that the molecular mechanism of translational control is more complicated than a simple physical blockage of scanning ribosomes.


Nature Communications | 2014

Specific recognition of the HIV-1 genomic RNA by the Gag precursor

Ekram W. Abd El-Wahab; Redmond P. Smyth; Elodie Mailler; Serena Bernacchi; Valérie Vivet-Boudou; Marcel Hijnen; Fabrice Jossinet; Johnson Mak; Jean-Christophe Paillart; Roland Marquet

During assembly of HIV-1 particles in infected cells, the viral Pr55(Gag) protein (or Gag precursor) must select the viral genomic RNA (gRNA) from a variety of cellular and viral spliced RNAs. However, there is no consensus on how Pr55(Gag) achieves this selection. Here, by using RNA binding and footprinting assays, we demonstrate that the primary Pr55(Gag) binding site on the gRNA consists of the internal loop and the lower part of stem-loop 1 (SL1), the upper part of which initiates gRNA dimerization. A double regulation ensures specific binding of Pr55(Gag) to the gRNA despite the fact that SL1 is also present in spliced viral RNAs. The region upstream of SL1, which is present in all HIV-1 RNAs, prevents binding to SL1, but this negative effect is counteracted by sequences downstream of SL4, which are unique to the gRNA.


Nucleic Acids Research | 2007

Aminoglycoside binding to the HIV-1 RNA dimerization initiation site: thermodynamics and effect on the kissing-loop to duplex conversion

Serena Bernacchi; Séverine Freisz; Clarisse Maechling; Bernard Spiess; Roland Marquet; Philippe Dumas; Eric Ennifar

Owing to a striking, and most likely fortuitous, structural and sequence similarity with the bacterial 16 S ribosomal A site, the RNA kissing-loop complex formed by the HIV-1 genomic RNA dimerization initiation site (DIS) specifically binds 4,5-disubstituted 2-deoxystreptamine (2-DOS) aminoglycoside antibiotics. We used chemical probing, molecular modeling, isothermal titration calorimetry (ITC) and UV melting to investigate aminoglycoside binding to the DIS loop–loop complex. We showed that apramycin, an aminoglycoside containing a bicyclic moiety, also binds the DIS, but in a different way than 4,5-disubstituted 2-DOS aminoglycosides. The determination of thermodynamic parameters for various aminoglycosides revealed the role of the different rings in the drug–RNA interaction. Surprisingly, we found that the affinity of lividomycin and neomycin for the DIS (Kd ∼ 30 nM) is significantly higher than that obtained in the same experimental conditions for their natural target, the bacterial A site (Kd ∼ 1.6 µM). In good agreement with their respective affinity, aminoglycoside increase the melting temperature of the loop–loop interaction and also block the conversion from kissing-loop complex to extended duplex. Taken together, our data might be useful for selecting new molecules with improved specificity and affinity toward the HIV-1 DIS RNA.


Journal of Biological Chemistry | 2007

RNA and DNA Binding Properties of HIV-1 Vif Protein A FLUORESCENCE STUDY

Serena Bernacchi; Simon Henriet; Philippe Dumas; Jean-Christophe Paillart; Roland Marquet

The HIV-1 viral infectivity factor (Vif) is a small basic protein essential for viral fitness and pathogenicity. Some “non-permissive” cell lines cannot sustain replication of Vif(-) HIV-1 virions. In these cells, Vif counteracts the natural antiretroviral activity of the DNA-editing enzymes APOBEC3G/3F. Moreover, Vif is packaged into viral particles through a strong interaction with genomic RNA in viral nucleoprotein complexes. To gain insights into determinants of this binding process, we performed the first characterization of Vif/nucleic acid interactions using Vif intrinsic fluorescence. We determined the affinity of Vif for RNA fragments corresponding to various regions of the HIV-1 genome. Our results demonstrated preferential and moderately cooperative binding for RNAs corresponding to the 5′-untranslated region of HIV-1 (5′-untranslated region) and gag (cooperativity parameter ω ∼ 65–80, and Kd = 45–55 nm). In addition, fluorescence spectroscopy allowed us to point out the TAR apical loop and a short region in gag as primary strong affinity binding sites (Kd = 9.5–14 nm). Interestingly, beside its RNA binding properties, the Vif protein can also bind the corresponding DNA oligonucleotides and their complementary counterparts with an affinity similar to the one observed for the RNA sequences, while other DNA sequences displayed reduced affinity. Taken together, our results suggest that Vif binding to RNA and DNA offers several non-exclusive ways to counteract APOBEC3G/3F factors, in addition to the well documented Vif-induced degradation by the proteasome and to the Vif-mediated repression of translation of these antiviral factors.


Nucleic Acids Research | 2011

Importance of the proline-rich multimerization domain on the oligomerization and nucleic acid binding properties of HIV-1 Vif

Serena Bernacchi; Gaëlle Mercenne; Clémence Tournaire; Roland Marquet; Jean-Christophe Paillart

The HIV-1 viral infectivity factor (Vif) is required for productive infection of non-permissive cells, including most natural HIV-1 targets, where it counteracts the antiviral activities of the cellular cytosine deaminases APOBEC-3G (A3G) and A3F. Vif is a multimeric protein and the conserved proline-rich domain 161PPLP164 regulating Vif oligomerization is crucial for its function and viral infectivity. Here, we expressed and purified wild-type Vif and a mutant protein in which alanines were substituted for the proline residues of the 161PPLP164 domain. Using dynamic light scattering, circular dichroism and fluorescence spectroscopy, we established the impact of these mutations on Vif oligomerization, secondary structure content and nucleic acids binding properties. In vitro, wild-type Vif formed oligomers of five to nine proteins, while Vif AALA formed dimers and/or trimers. Up to 40% of the unbound wild-type Vif protein appeared to be unfolded, but binding to the HIV-1 TAR apical loop promoted formation of β-sheets. Interestingly, alanine substitutions did not significantly affect the secondary structure of Vif, but they diminished its binding affinity and specificity for nucleic acids. Dynamic light scattering showed that Vif oligomerization, and interaction with folding-promoting nucleic acids, favor formation of high molecular mass complexes. These properties could be important for Vif functions involving RNAs.


Biophysical Journal | 2003

Excitonic Heterodimer Formation in an HIV-1 Oligonucleotide Labeled with a Donor-Acceptor Pair Used for Fluorescence Resonance Energy Transfer

Serena Bernacchi; Etienne Piémont; Noelle Potier; Alain Van Dorsselaer; Yves Mély

In this study, we investigated the absorbance and fluorescence properties of cTAR, the complementary DNA sequence of the transactivation response element of the HIV-1 genome, doubly end-labeled by different dyes, 5(and 6)-carboxyfluorescein (Fl) and 5(and 6)-carboxytetramethylrhodamine (TMR), frequently used in fluorescence resonance energy transfer (FRET) studies. This oligonucleotide forms a stable stem-loop structure. The absorption spectrum of this species clearly differed from that of a doubly labeled cTAR derivative in which the terminal part of the stem is melted and from an equimolecular mixture of singly labeled species. Moreover, no significant TMR fluorescence change accompanies the dramatic Fl intensity increase when the doubly labeled native cTAR was melted by temperature or annealed with its complementary sequence. Both elements suggest the formation of an H-type ground-state heterodimer between Fl and TMR that may be described by the molecular exciton model. Moreover, time-resolved fluorescence further suggests that the nonfluorescent heterodimer is in equilibrium with a small population of partially melted species showing FRET. Based on the spectral shifts associated with heterodimer formation, an interchromophore distance of 7.7 A was calculated. Both the excitonic signal and the Fl fluorescence were used as sensitive tools to monitor the temperature-mediated and HIV nucleocapsid protein-mediated annealing of cTAR with its complementary sequence.


Nature Methods | 2015

Mutational interference mapping experiment (MIME) for studying RNA structure and function

Redmond P. Smyth; Laurence Despons; Gong Huili; Serena Bernacchi; Marcel Hijnen; Johnson Mak; Fabrice Jossinet; Li Weixi; Jean-Christophe Paillart; Max von Kleist; Roland Marquet

RNA regulates many biological processes; however, identifying functional RNA sequences and structures is complex and time-consuming. We introduce a method, mutational interference mapping experiment (MIME), to identify, at single-nucleotide resolution, the primary sequence and secondary structures of an RNA molecule that are crucial for its function. MIME is based on random mutagenesis of the RNA target followed by functional selection and next-generation sequencing. Our analytical approach allows the recovery of quantitative binding parameters and permits the identification of base-pairing partners directly from the sequencing data. We used this method to map the binding site of the human immunodeficiency virus-1 (HIV-1) Pr55Gag protein on the viral genomic RNA in vitro, and showed that, by analyzing permitted base-pairing patterns, we could model RNA structure motifs that are crucial for protein binding.

Collaboration


Dive into the Serena Bernacchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Marquet

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Yves Mély

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Dumas

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard P. Roques

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Julien Batisse

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Simon Henriet

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge