Santosh Kc
University of Texas at Dallas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Santosh Kc.
Science | 2015
Matin Amani; Der Hsien Lien; Daisuke Kiriya; Jun Xiao; Angelica Azcatl; Jiyoung Noh; Surabhi R. Madhvapathy; Rafik Addou; Santosh Kc; Madan Dubey; Kyeongjae Cho; Robert M. Wallace; Si-Chen Lee; Jr-Hau He; Joel W. Ager; Xiang Zhang; Eli Yablonovitch; Ali Javey
Brighter molybdenum layers The confined layers of molybdenum disulphide (MoS2) exhibit photoluminescence that is attractive for optolectronic applications. In practice, efficiencies are low, presumably because defects trap excitons before they can recombine and radiate light. Amani et al. show that treatment of monolayer MoS2 with a nonoxidizing organic superacid, bis(trifluoromethane) sulfonimide, increased luminescence efficiency in excess of 95%. The enhancement mechanism may be related to the shielding of defects, such as sulfur vacancies. Science, this issue p. 1065 Superacid treatment enhances the luminescence efficiency of monolayer molybdenum disulfide from 1% to >95%. Two-dimensional (2D) transition metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure of merit, the room-temperature photoluminescence quantum yield (QY), is extremely low. The prototypical 2D material molybdenum disulfide (MoS2) is reported to have a maximum QY of 0.6%, which indicates a considerable defect density. Here we report on an air-stable, solution-based chemical treatment by an organic superacid, which uniformly enhances the photoluminescence and minority carrier lifetime of MoS2 monolayers by more than two orders of magnitude. The treatment eliminates defect-mediated nonradiative recombination, thus resulting in a final QY of more than 95%, with a longest-observed lifetime of 10.8 ± 0.6 nanoseconds. Our ability to obtain optoelectronic monolayers with near-perfect properties opens the door for the development of highly efficient light-emitting diodes, lasers, and solar cells based on 2D materials.
Nanotechnology | 2014
Santosh Kc; Roberto C. Longo; Rafik Addou; Robert M. Wallace; Kyeongjae Cho
Monolayer MoS2 is a direct band gap semiconductor which has been recently investigated for low-power field effect transistors. The initial studies have shown promising performance, including a high on/off current ratio and carrier mobility with a high-κ gate dielectric. However, the performance of these devices strongly depends on the crystalline quality and defect morphology of the monolayers. In order to obtain a detailed understanding of the MoS2 electronic device properties, we examine possible defect structures and their impact on the MoS2 monolayer electronic properties, using density functional theory in combination with scanning tunneling microscopy to identify the nature of the most likely defects. Quantitative understanding based on a detailed knowledge of the atomic and electronic structures will facilitate the search of suitable defect passivation techniques. Our results show that S adatoms are the most energetically favorable type of defect and that S vacancies are energetically more favorable than Mo vacancies. This approach may be extended to other transition-metal dichalcogenides (TMDs), thus providing useful insights to optimize TMD-based electronic devices.
ACS Nano | 2014
Peida Zhao; Daisuke Kiriya; Angelica Azcatl; Chenxi Zhang; Mahmut Tosun; Yi-Sheng Liu; Mark Hettick; Jeong Seuk Kang; Stephen McDonnell; Santosh Kc; Jinghua Guo; Kyeongjae Cho; Robert M. Wallace; Ali Javey
Covalent functionalization of transition metal dichalcogenides (TMDCs) is investigated for air-stable chemical doping. Specifically, p-doping of WSe(2) via NOx chemisorption at 150 °C is explored, with the hole concentration tuned by reaction time. Synchrotron based soft X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) depict the formation of various WSe(2-x-y)O(x)N(y) species both on the surface and interface between layers upon chemisorption reaction. Ab initio simulations corroborate our spectroscopy results in identifying the energetically favorable complexes, and predicting WSe(2):NO at the Se vacancy sites as the predominant dopant species. A maximum hole concentration of ∼ 10(19) cm(-3) is obtained from XPS and electrical measurements, which is found to be independent of WSe(2) thickness. This degenerate doping level facilitates 5 orders of magnitude reduction in contact resistance between Pd, a common p-type contact metal, and WSe(2). More generally, the work presents a platform for manipulating the electrical properties and band structure of TMDCs using covalent functionalization.
Applied Physics Letters | 2014
Angelica Azcatl; Stephen McDonnell; Santosh Kc; Xin Peng; Hong Dong; Xiaoye Qin; Rafik Addou; Greg Mordi; Ning Lu; Jiyoung Kim; Moon J. Kim; Kyeongjae Cho; Robert M. Wallace
The effect of room temperature ultraviolet-ozone (UV-O3) exposure of MoS2 on the uniformity of subsequent atomic layer deposition of Al2O3 is investigated. It is found that a UV-O3 pre-treatment removes adsorbed carbon contamination from the MoS2 surface and also functionalizes the MoS2 surface through the formation of a weak sulfur-oxygen bond without any evidence of molybdenum-sulfur bond disruption. This is supported by first principles density functional theory calculations which show that oxygen bonded to a surface sulfur atom while the sulfur is simultaneously back-bonded to three molybdenum atoms is a thermodynamically favorable configuration. The adsorbed oxygen increases the reactivity of MoS2 surface and provides nucleation sites for atomic layer deposition of Al2O3. The enhanced nucleation is found to be dependent on the thin film deposition temperature.
Journal of Applied Physics | 2015
Santosh Kc; Roberto C. Longo; Robert M. Wallace; Kyeongjae Cho
In this work, surface oxidation of monolayer MoS2 (one of the representative semiconductors in transition-metal dichalcogenides) has been investigated using density functional theory method. Oxygen interaction with MoS2 shows that, thermodynamically, the surface tends to be oxidized. However, the dissociative absorption of molecular oxygen on the MoS2 surface is kinetically limited due to the large energy barrier at low temperature. This finding elucidates the air stability of MoS2 surface in the atmosphere. Furthermore, the presence of defects significantly alters the surface stability and adsorption mechanisms. The electronic properties of the oxidized surface have been examined as a function of oxygen adsorption and coverage as well as substitutional impurities. Our results on energetics and kinetics of oxygen interaction with the MoS2 monolayer are useful for the understanding of surface oxidation, air stability, and electronic properties of transition-metal dichalcogenides at the atomic scale.
2D Materials | 2015
Angelica Azcatl; Santosh Kc; Xin Peng; Ning Lu; Stephen McDonnell; Xiaoye Qin; Francis de Dios; Rafik Addou; Jiyoung Kim; Moon J. Kim; Kyeongjae Cho; Robert M. Wallace
The surface chemistry of MoS2, WSe2 and MoSe2 upon ultraviolet (UV)?O3 exposure was studied in situ by x-ray photoelectron spectroscopy (XPS). Differences in reactivity of these transition metal dichalcogenides (TMDs) towards oxidation during UV?O3 were observed and correlated with density functional theory calculations. Also, sequential HfO2 depositions were performed by atomic layer deposition (ALD) while the interfacial reactions were monitored by XPS. It is found that the surface oxides generated on MoSe2 and WSe2 during UV?O3 exposure were reduced by the ALD process (?self-cleaning effect?). The effectiveness of the oxide reduction on these TMDs is discussed and correlated with the HfO2 film uniformity.
Journal of Materials Chemistry | 2015
Fantai Kong; Roberto C. Longo; Min-Sik Park; Jaegu Yoon; Dong-Hee Yeon; Jin-Hwan Park; Wei-Hua Wang; Santosh Kc; Seok-Gwang Doo; Kyeongjae Cho
For the over-lithiated-oxides (OLOs), a composite of layered Li2MnO3 and LiMO2 (M = Mn, Co, Ni), the Li2MnO3 part is not stable after the 1st charge–discharge cycle and partly transforms into layered LiMnO2, which in practice indicates that the phase used is actually a mixture of both Li2MnO3 and LiMnO2. In the present work, the influence of 10 cationic (Mg, Ti, V, Nb, Fe, Ru, Co, Ni, Cu, and Al) and 2 anionic (N and F) dopants on the phase stability, redox potential, ionic and electronic conductivity of both Li2MnO3 and LiMnO2 is investigated in detail using density functional theory. The calculations show that all the cationic dopants and F can be thermodynamically stable in the layered structures. The redox potential of both oxides is quite sensitive to some of the dopants, like V, Nb, and Ru, due to the appearance of gap states introduced by those dopants. The Jahn–Teller effect has a strong influence on the Li vacancy diffusion behavior in both LiMnO2 and its doped phases. Li vacancy diffusion behavior in Li2MnO3, including both interlayer and intralayer pathways, is relatively more complex and some dopants like Mg, Ti, Nb, and Ru can decrease the barriers of the diffusion paths. The calculations also show the evidence of hole polaron formation in LiMnO2 and electron polaron formation in Li2MnO3 which should be the reason why these phases have low electronic conductivities. Based on these findings, possible ways to improve the electronic conductivity through the doping process are discussed.
ACS Nano | 2015
Juan Pablo Oviedo; Santosh Kc; Ning Lu; Jinguo Wang; Kyeongjae Cho; Robert M. Wallace; Moon J. Kim
The experimental study of interlayer sliding at the nanoscale in layered solids has been limited thus far by the incapability of mechanical and imaging probes to simultaneously access sliding interfaces and overcome through mechanical stimulus the van der Waals and Coulombic interactions holding the layers in place. For this purpose, straightforward methods were developed to achieve interlayer sliding in molybdenum disulfide (MoS2) while under observation within a transmission electron microscope. A method to manipulate, tear, and slide free-standing atomic layers of MoS2 is demonstrated by electrostatically coupling it to an oxidized tungsten probe attached to a micromanipulator at a bias above ±7 V. A first-principles model of a MoS2 bilayer polarized by a normal electric field of 5 V/nm, emanating from the tip, demonstrates the appearance of a periodic negative sliding potential energy barrier when the layers slide into the out-of-registry stacking configuration, hinting at electrostatic gating as a means of modifying the interlayer tribology to facilitate shear exfoliation. A method to shear focused ion beam prepared MoS2 cross section samples using a nanoindenter force sensor is also demonstrated, allowing both the observation and force measurement of its interlayer dynamics during shear-induced sliding. From this experiment, the zero normal load shear strength of MoS2 can be directly obtained: 25.3 ± 0.6 MPa. These capabilities enable the site-specific mechanical testing of dry lubricant-based nanoelectromechanical devices and can lead to a better understanding of the atomic mechanisms from which the interlayer tribology of layered materials originates.
Scientific Reports | 2016
Junga Ryou; Yong-Sung Kim; Santosh Kc; Kyeongjae Cho
Semiconductors with a moderate bandgap have enabled modern electronic device technology, and the current scaling trends down to nanometer scale have introduced two-dimensional (2D) semiconductors. The bandgap of a semiconductor has been an intrinsic property independent of the environments and determined fundamental semiconductor device characteristics. In contrast to bulk semiconductors, we demonstrate that an atomically thin two-dimensional semiconductor has a bandgap with strong dependence on dielectric environments. Specifically, monolayer MoS2 bandgap is shown to change from 2.8 eV to 1.9 eV by dielectric environment. Utilizing the bandgap modulation property, a tunable bandgap transistor, which can be in general made of a two-dimensional semiconductor, is proposed.
Applied Physics Letters | 2013
H. Dong; Wilfredo Cabrera; R. V. Galatage; Santosh Kc; Barry Brennan; Xiaoye Qin; Stephen McDonnell; D. M. Zhernokletov; C. L. Hinkle; Kyeongjae Cho; Yves J. Chabal; Robert M. Wallace
Evidence of indium diffusion through high-k dielectric (Al2O3 and HfO2) films grown on InP (100) by atomic layer deposition is observed by angle resolved X-ray photoelectron spectroscopy and low energy ion scattering spectroscopy. The analysis establishes that In-out diffusion occurs and results in the formation of a POx rich interface.