Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah C. Davis is active.

Publication


Featured researches published by Sarah C. Davis.


Science | 2010

Feedstocks for Lignocellulosic Biofuels

Chris Somerville; Heather Youngs; Caroline M. Taylor; Sarah C. Davis; Stephen P. Long

In 2008, the world produced approximately 87 gigaliters of liquid biofuels, which is roughly equal to the volume of liquid fuel consumed by Germany that year. Essentially, all of this biofuel was produced from crops developed for food production, raising concerns about the net energy and greenhouse gas effects and potential competition between use of land for production of fuels, food, animal feed, fiber, and ecosystem services. The pending implementation of improved technologies to more effectively convert the nonedible parts of plants (lignocellulose) to liquid fuels opens diverse options to use biofuel feedstocks that reach beyond current crops and the land currently used for food and feed. However, there has been relatively little discussion of what types of plants may be useful as bioenergy crops.


Gcb Bioenergy | 2009

Changes in soil organic carbon under biofuel crops

Kristina J. Anderson-Teixeira; Sarah C. Davis; Michael D. Masters; Evan H. DeLucia

One potentially significant impact of growing biofuel crops will be the sequestration or release of carbon (C) in soil. Soil organic carbon (SOC) represents an important C sink in the lifecycle C balances of biofuels and strongly influences soil quality. We assembled and analyzed published estimates of SOC change following conversion of natural or agricultural land to biofuel crops of corn with residue harvest, sugarcane, Miscanthus x giganteus, switchgrass, or restored prairie. We estimated SOC losses associated with land conversion and rates of change in SOC over time by regressing net change in SOC relative to a control against age since establishment year. Conversion of uncultivated land to biofuel agriculture resulted in significant SOC losses – an effect that was most pronounced when native land was converted to sugarcane agriculture. Corn residue harvest (at 25–100% removal) consistently resulted in SOC losses averaging 3–8 Mg ha−1 in the top 30 cm, whereas SOC accumulated under all four perennial grasses, with SOC accumulation rates averaging <1 Mg ha−1 yr−1 in the top 30 cm. More intensive harvests led to decreased C gains or increased C losses – an effect that was particularly clear for residue harvest in corn. Direct or indirect conversion of previously uncultivated land for biofuel agriculture will result in SOC losses that counteract the benefits of fossil fuel displacement. Additionally, SOC losses under corn residue harvest imply that its potential to offset C emissions may be overestimated, whereas SOC sequestration under perennial grasses represents an additional benefit that has rarely been accounted for in life cycle analyses of biofuels.


Science | 2010

O-Mannosyl Phosphorylation of Alpha-Dystroglycan Is Required for Laminin Binding

Takako Yoshida-Moriguchi; Liping Yu; Stephanie H. Stalnaker; Sarah C. Davis; Stefan Kunz; Michael Madson; Michael B. A. Oldstone; Harry Schachter; Lance Wells; Kevin P. Campbell

Modifying Protein Modification Alpha-dystroglycan (α-DG) is a cell-surface receptor that anchors the basal lamina to the sarcolemma by binding proteins containing laminin-G domains. This binding is essential for protecting muscle from contraction-induced injury, and defective binding is thought to cause a subclass of congenital muscular dystrophy (CMD) in humans. Mutations in six (putative) glycosyltransferase genes have been identified in patients with CMD, suggesting that glycosylation of α-DG may confer the ability to bind laminin. Despite extensive efforts for over 20 years, the actual laminin-binding moiety has remained unclear. Now, Yoshida-Moriguchi et al. (p. 88) have identified a phosphorylated O-mannosyl glycan on α-DG. This modification occurred in the Golgi via an unidentified kinase and was required for the maturation of α-DG into its laminin-binding form. A posttranslational sugar modification required to prevent certain dystrophies is identified and characterized. Alpha-dystroglycan (α-DG) is a cell-surface glycoprotein that acts as a receptor for both extracellular matrix proteins containing laminin-G domains and certain arenaviruses. Receptor binding is thought to be mediated by a posttranslational modification, and defective binding with laminin underlies a subclass of congenital muscular dystrophy. Using mass spectrometry– and nuclear magnetic resonance (NMR)–based structural analyses, we identified a phosphorylated O-mannosyl glycan on the mucin-like domain of recombinant α-DG, which was required for laminin binding. We demonstrated that patients with muscle-eye-brain disease and Fukuyama congenital muscular dystrophy, as well as mice with myodystrophy, commonly have defects in a postphosphoryl modification of this phosphorylated O-linked mannose, and that this modification is mediated by the like-acetylglucosaminyltransferase (LARGE) protein. These findings expand our understanding of the mechanisms that underlie congenital muscular dystrophy.


Trends in Plant Science | 2009

Life-cycle analysis and the ecology of biofuels.

Sarah C. Davis; Kristina J. Anderson-Teixeira; Evan H. DeLucia

Biofuels have been proposed as an ecologically benign alternative to fossil fuels. There is, however, considerable uncertainty in the scientific literature about their ecological benefit. Here, we review studies that apply life-cycle analysis (LCA), a computational tool for assessing the efficiency and greenhouse gas (GHG) impact of energy systems, to biofuel feedstocks. Published values for energy efficiency and GHG differ significantly even for an individual species, and we identify three major sources of variation in these LCA results. By providing new information on biogeochemistry and plant physiology, ecologists and plant scientists can increase the accuracy of LCA for biofuel production systems.


Frontiers in Ecology and the Environment | 2012

Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US.

Sarah C. Davis; William J. Parton; Stephen J. Del Grosso; Cindy Keough; Ernest Marx; Paul R. Adler; Evan H. DeLucia

In the US, 95% of biofuel is produced from corn (Zea mays L), an intensively managed annual crop that is also grown for food and animal feed. Using the DAYCENT model, we estimated the effects on ecosystem services of replacing corn ethanol feedstocks with the perennial cellulosic feedstocks switchgrass (Panicum virgatum L) and miscanthus (Miscanthus × giganteus Greef et Deuter). If cellulosic feedstocks were planted on cropland that is currently used for ethanol production in the US, more ethanol (+82%) and grain for food (+4%) could be produced while at the same time reducing nitrogen leaching (−15 to −22%) and greenhouse-gas (GHG) emissions (−29 to −473%). The GHG reduction was large even after accounting for emissions associated with indirect land-use change. Conversion from a high-input annual crop to a low-input perennial crop for biofuel production can thus transition the central US from a net source to a net sink for GHGs.


Gcb Bioenergy | 2011

The global potential for Agave as a biofuel feedstock

Sarah C. Davis; Frank G. Dohleman; Stephen P. Long

Large areas of the tropics and subtropics are too arid or degraded to support food crops, but Agave species may be suitable for biofuel production in these regions. We review the potential of Agave species as biofuel feedstocks in the context of ecophysiology, agronomy, and land availability for this genus globally. Reported dry biomass yields of Agave spp., when annualized, range from <1 to 34 Mg ha−1 yr−1 without irrigation, depending on species and location. Some of the most productive species have not yet been evaluated at a commercial scale. Approximately 0.6 Mha of land previously used to grow Agave for coarse fibers have fallen out of production, largely as a result of competition with synthetic fibers. Theoretically, this crop area alone could provide 6.1 billion L of ethanol if Agave were re‐established as a bioenergy feedstock without causing indirect land use change. Almost one‐fifth of the global land surface is semiarid, suggesting there may be large opportunities for expansion of Agave crops for feedstock, but more field trials are needed to determine tolerance boundaries for different Agave species.


Gcb Bioenergy | 2013

Management swing potential for bioenergy crops

Sarah C. Davis; Robert M. Boddey; Bruno José Rodrigues Alves; Annette Cowie; Brendan H. George; Stephen M. Ogle; Pete Smith; Meine van Noordwijk; Mark T. van Wijk

Bioenergy crops are often classified (and subsequently regulated) according to species that have been evaluated as environmentally beneficial or detrimental, but in practice, management decisions rather than species per se can determine the overall environmental impact of a bioenergy production system. Here, we review the greenhouse gas balance and ‘management swing potential’ of seven different bioenergy cropping systems in temperate and tropical regions. Prior land use, harvesting techniques, harvest timing, and fertilization are among the key management considerations that can swing the greenhouse gas balance of bioenergy from positive to negative or the reverse. Although the management swing potential is substantial for many cropping systems, there are some species (e.g., soybean) that have such low bioenergy yield potentials that the environmental impact is unlikely to be reversed by management. High‐yielding bioenergy crops (e.g., corn, sugarcane, Miscanthus, and fast‐growing tree species), however, can be managed for environmental benefits or losses, suggesting that the bioenergy sector would be better informed by incorporating management‐based evaluations into classifications of bioenergy feedstocks.


New Phytologist | 2015

A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world

Xiaohan Yang; John C. Cushman; Anne M. Borland; Erika J. Edwards; Stan D. Wullschleger; Gerald A. Tuskan; Nick A. Owen; Howard Griffiths; J. Andrew C. Smith; Henrique Cestari De Paoli; David J. Weston; Robert W. Cottingham; James Hartwell; Sarah C. Davis; Katia Silvera; Ray Ming; Karen Schlauch; Paul E. Abraham; J. Ryan Stewart; Hao Bo Guo; Rebecca L. Albion; Jungmin Ha; Sung Don Lim; Bernard Wone; Won Cheol Yim; Travis Garcia; Jesse A. Mayer; Juli Petereit; Sujithkumar Surendran Nair; Erin Casey

Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO2 uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food, feed, and bioenergy crops. An improved understanding of CAM has potential for high returns on research investment. To exploit the potential of CAM crops and CAM bioengineering, it will be necessary to elucidate the evolution, genomic features, and regulatory mechanisms of CAM. Field trials and predictive models will be required to assess the productivity of CAM crops, while new synthetic biology approaches need to be developed for CAM engineering. Infrastructure will be needed for CAM model systems, field trials, mutant collections, and data management.


Plant Cell and Environment | 2010

Hydraulic limitation not declining nitrogen availability causes the age‐related photosynthetic decline in loblolly pine (Pinus taeda L.)

John E. Drake; L. M Raetz; Sarah C. Davis; Evan H. DeLucia

Declining net primary production (NPP) with forest age is often attributed to a corresponding decline in gross primary production (GPP). We tested two hypotheses explaining the decline of GPP in ageing stands (14-115 years old) of Pinus taeda L.: (1) increasing N limitation limits photosynthetic capacity and thus decreases GPP with increasing age; and (2) hydraulic limitations increasingly induce stomatal closure, reducing GPP with increasing age. We tested these hypotheses using measurements of foliar nitrogen, photosynthesis, sap-flow and dendroclimatological techniques. Hypothesis (1) was not supported; foliar N retranslocation did not increase and declines were not observed in foliar N, leaf area per tree or photosynthetic capacity. Hypothesis (2) was supported; declines were observed in light-saturated photosynthesis, leaf- and canopy-level stomatal conductance, concentration of CO(2) inside leaf air-spaces (corroborated by an increase in wood δ(13) C) and specific leaf area (SLA), while stomatal limitation and the ratio of sapwood area (SA) to leaf area increased. The sensitivity of radial growth to inter-annual variation in temperature and drought decreased with age, suggesting that tree water use becomes increasingly conservative with age. We conclude that hydraulic limitation increasingly limits the photosynthetic rates of ageing loblolly pine trees, possibly explaining the observed reduction of NPP.


Gcb Bioenergy | 2015

Bioenergy crop greenhouse gas mitigation potential under a range of management practices

Tara W. Hudiburg; Sarah C. Davis; William J. Parton; Evan H. DeLucia

Perennial grasses have been proposed as viable bioenergy crops because of their potential to yield harvestable biomass on marginal lands annually without displacing food and to contribute to greenhouse gas (GHG) reduction by storing carbon in soil. Switchgrass, miscanthus, and restored native prairie are among the crops being considered in the corn and agricultural regions of the Midwest and eastern United States. In this study, we used an extensive dataset of site observations for each of these crops to evaluate and improve the DayCent biogeochemical model and make predictions about how both yield and GHG fluxes would respond to different management practices compared to a traditional corn‐soy rotation. Using this model‐data integration approach, we found 30–75% improvement in our predictions over previous studies and a subsequent evaluation with a synthesis of sites across the region revealed good model‐data agreement of harvested yields (r2 > 0.62 for all crops). We found that replacement of corn‐soy rotations would result in a net GHG reduction of 0.5, 1.0, and 2.0 Mg C ha−1 yr−1 with average annual yields of 3.6, 9.2, and 17.2 Mg of dry biomass per year for native prairie, switchgrass, and miscanthus respectively. Both the yield and GHG balance of switchgrass and miscanthus were affected by harvest date with highest yields occurring near onset of senescence and highest GHG reductions occurring in early spring before the new crops emergence. Addition of a moderate length rotation (10–15 years) caused less than a 15% change to yield and GHG balance. For policy incentives aimed at GHG reduction through onsite management practices and improvement of soil quality, post‐senescence harvests are a more effective means than maximizing yield potential.

Collaboration


Dive into the Sarah C. Davis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristina J. Anderson-Teixeira

Smithsonian Conservation Biology Institute

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Del Grosso

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Cindy Keough

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Ernest Marx

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Heather Youngs

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. Adler

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Stephen M. Ogle

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge