Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tara W. Hudiburg is active.

Publication


Featured researches published by Tara W. Hudiburg.


Ecological Applications | 2009

Carbon dynamics of Oregon and Northern California forests and potential land‐based carbon storage

Tara W. Hudiburg; Beverly E. Law; David P. Turner; John L. Campbell; Daniel C. Donato; Maureen V. Duane

Net uptake of carbon from the atmosphere (net ecosystem production, NEP) is dependent on climate, disturbance history, management practices, forest age, and forest type. To improve understanding of the influence of these factors on forest carbon stocks and flux in the western United States, federal inventory data and supplemental field measurements at additional plots were used to estimate several important components of the carbon balance in forests in Oregon and Northern California during the 1990s. Species- and ecoregion-specific allometric equations were used to estimate live and dead biomass stores, net primary productivity (NPP), and mortality. In the semiarid East Cascades and mesic Coast Range, mean total biomass was 8 and 24 kg C/m2, and mean NPP was 0.30 and 0.78 kg C.m(-2).yr(-1), respectively. Maximum NPP and dead biomass stores were most influenced by climate, whereas maximum live biomass stores and mortality were most influenced by forest type. Within ecoregions, mean live and dead biomass were usually higher on public lands, primarily because of the younger age class distribution on private lands. Decrease in NPP with age was not general across ecoregions, with no marked decline in old stands (>200 years old) in some ecoregions. In the absence of stand-replacing disturbance, total landscape carbon stocks could theoretically increase from 3.2 +/- 0.34 Pg C to 5.9 +/- 1.34 Pg C (a 46% increase) if forests were managed for maximum carbon storage. Although the theoretical limit is probably unattainable, given the timber-based economy and fire regimes in some ecoregions, there is still potential to significantly increase the land-based carbon storage by increasing rotation age and reducing harvest rates.


Global Change Biology | 2013

Altered dynamics of forest recovery under a changing climate

Kristina J. Anderson-Teixeira; Adam D. Miller; Jacqueline E. Mohan; Tara W. Hudiburg; Benjamin D. Duval; Evan H. DeLucia

Forest regeneration following disturbance is a key ecological process, influencing forest structure and function, species assemblages, and ecosystem-climate interactions. Climate change may alter forest recovery dynamics or even prevent recovery, triggering feedbacks to the climate system, altering regional biodiversity, and affecting the ecosystem services provided by forests. Multiple lines of evidence - including global-scale patterns in forest recovery dynamics; forest responses to experimental manipulation of CO2 , temperature, and precipitation; forest responses to the climate change that has already occurred; ecological theory; and ecosystem and earth system models - all indicate that the dynamics of forest recovery are sensitive to climate. However, synthetic understanding of how atmospheric CO2 and climate shape trajectories of forest recovery is lacking. Here, we review these separate lines of evidence, which together demonstrate that the dynamics of forest recovery are being impacted by increasing atmospheric CO2 and changing climate. Rates of forest recovery generally increase with CO2 , temperature, and water availability. Drought reduces growth and live biomass in forests of all ages, having a particularly strong effect on seedling recruitment and survival. Responses of individual trees and whole-forest ecosystems to CO2 and climate manipulations often vary by age, implying that forests of different ages will respond differently to climate change. Furthermore, species within a community typically exhibit differential responses to CO2 and climate, and altered community dynamics can have important consequences for ecosystem function. Age- and species-dependent responses provide a mechanism by which climate change may push some forests past critical thresholds such that they fail to recover to their previous state following disturbance. Altered dynamics of forest recovery will result in positive and negative feedbacks to climate change. Future research on this topic and corresponding improvements to earth system models will be a key to understanding the future of forests and their feedbacks to the climate system.


Environmental Science & Technology | 2015

Cost of abating greenhouse gas emissions with cellulosic ethanol.

Puneet Dwivedi; Weiwei Wang; Tara W. Hudiburg; Deepak Jaiswal; William J. Parton; Stephen P. Long; Evan H. DeLucia; Madhu Khanna

We develop an integrated framework to determine and compare greenhouse gas (GHG) intensities and production costs of cellulosic ethanol derived from corn stover, switchgrass, and miscanthus grown on high and low quality soils for three representative counties in the Eastern United States. This information is critical for assessing the cost-effectiveness of utilizing cellulosic ethanol for mitigating GHG emissions and designing appropriate policy incentives to support cellulosic ethanol production nationwide. We find considerable variations in the GHG intensities and production costs of ethanol across feedstocks and locations mostly due to differences in yields and soil characteristics. As compared to gasoline, the GHG savings from miscanthus-based ethanol ranged between 130% and 156% whereas that from switchgrass ranged between 97% and 135%. The corresponding range for GHG savings with corn stover was 57% to 95% and marginally below the threshold of at least 60% for biofuels classified as cellulosic biofuels under the Renewable Fuels Standard. Estimates of the costs of producing ethanol relative to gasoline imply an abatement cost of at least


Gcb Bioenergy | 2015

Bioenergy crop greenhouse gas mitigation potential under a range of management practices

Tara W. Hudiburg; Sarah C. Davis; William J. Parton; Evan H. DeLucia

48 Mg(-1) of GHG emissions (carbon dioxide equivalent) abated and can be used to infer the minimum carbon tax rate needed to induce consumption of cellulosic ethanol.


Environmental Science & Technology | 2014

The theoretical limit to plant productivity.

Evan H. DeLucia; Nuria Gomez-Casanovas; Jonathan A. Greenberg; Tara W. Hudiburg; Ilsa Kantola; Stephen P. Long; Adam D. Miller; Donald R. Ort; William J. Parton

Perennial grasses have been proposed as viable bioenergy crops because of their potential to yield harvestable biomass on marginal lands annually without displacing food and to contribute to greenhouse gas (GHG) reduction by storing carbon in soil. Switchgrass, miscanthus, and restored native prairie are among the crops being considered in the corn and agricultural regions of the Midwest and eastern United States. In this study, we used an extensive dataset of site observations for each of these crops to evaluate and improve the DayCent biogeochemical model and make predictions about how both yield and GHG fluxes would respond to different management practices compared to a traditional corn‐soy rotation. Using this model‐data integration approach, we found 30–75% improvement in our predictions over previous studies and a subsequent evaluation with a synthesis of sites across the region revealed good model‐data agreement of harvested yields (r2 > 0.62 for all crops). We found that replacement of corn‐soy rotations would result in a net GHG reduction of 0.5, 1.0, and 2.0 Mg C ha−1 yr−1 with average annual yields of 3.6, 9.2, and 17.2 Mg of dry biomass per year for native prairie, switchgrass, and miscanthus respectively. Both the yield and GHG balance of switchgrass and miscanthus were affected by harvest date with highest yields occurring near onset of senescence and highest GHG reductions occurring in early spring before the new crops emergence. Addition of a moderate length rotation (10–15 years) caused less than a 15% change to yield and GHG balance. For policy incentives aimed at GHG reduction through onsite management practices and improvement of soil quality, post‐senescence harvests are a more effective means than maximizing yield potential.


Environmental Science & Technology | 2013

Interactive effects of environmental change and management strategies on regional forest carbon emissions

Tara W. Hudiburg; Sebastiaan Luyssaert; Peter E. Thornton; Beverly E. Law

Human population and economic growth are accelerating the demand for plant biomass to provide food, fuel, and fiber. The annual increment of biomass to meet these needs is quantified as net primary production (NPP). Here we show that an underlying assumption in some current models may lead to underestimates of the potential production from managed landscapes, particularly of bioenergy crops that have low nitrogen requirements. Using a simple light-use efficiency model and the theoretical maximum efficiency with which plant canopies convert solar radiation to biomass, we provide an upper-envelope NPP unconstrained by resource limitations. This theoretical maximum NPP approached 200 tC ha(-1) yr(-1) at point locations, roughly 2 orders of magnitude higher than most current managed or natural ecosystems. Recalculating the upper envelope estimate of NPP limited by available water reduced it by half or more in 91% of the land area globally. While the high conversion efficiencies observed in some extant plants indicate great potential to increase crop yields without changes to the basic mechanism of photosynthesis, particularly for crops with low nitrogen requirements, realizing such high yields will require improvements in water use efficiency.


Gcb Bioenergy | 2017

Contribution of above- and belowground bioenergy crop residues to soil carbon

João Luís Nunes Carvalho; Tara W. Hudiburg; Henrique Coutinho Junqueira Franco; Evan H. DeLucia

Climate mitigation activities in forests need to be quantified in terms of the long-term effects on forest carbon stocks, accumulation, and emissions. The impacts of future environmental change and bioenergy harvests on regional forest carbon storage have not been quantified. We conducted a comprehensive modeling study and life-cycle assessment of the impacts of projected changes in climate, CO2 concentration, and N deposition, and region-wide forest management policies on regional forest carbon fluxes. By 2100, if current management strategies continue, then the warming and CO2 fertilization effect in the given projections result in a 32-68% increase in net carbon uptake, overshadowing increased carbon emissions from projected increases in fire activity and other forest disturbance factors. To test the response to new harvesting strategies, repeated thinnings were applied in areas susceptible to fire to reduce mortality, and two clear-cut rotations were applied in productive forests to provide biomass for wood products and bioenergy. The management strategies examined here lead to long-term increased carbon emissions over current harvesting practices, although semiarid regions contribute little to the increase. The harvest rates were unsustainable. This comprehensive approach could serve as a foundation for regional place-based assessments of management effects on future carbon sequestration by forests in other locations.


Tellus B | 2011

Multiple constraint analysis of regional land–surface carbon flux

David P. Turner; Mathias Göckede; Beverly E. Law; William D. Ritts; Warren B. Cohen; Zhiqiang Yang; Tara W. Hudiburg; Robert E. Kennedy; Maureen V. Duane

GHG mitigation by bioenergy crops depends on crop type, management practices, and the input of residue carbon (C) to the soil. Perennial grasses may increase soil C compared to annual crops because of more extensive root systems, but it is less clear how much soil C is derived from above‐ vs. belowground inputs. The objective of this study was to synthesize the existing knowledge regarding soil C inputs from above‐ and belowground crop residues in regions cultivated with sugarcane, corn, and miscanthus, and to predict the impact of residue removal and tillage on soil C stocks. The literature review showed that aboveground inputs to soil C (to 1‐m depth) ranged from 70% to 81% for sugarcane and corn vs. 40% for miscanthus. Modeled aboveground C inputs (to 30 cm depth) ranged from 54% to 82% for sugarcane, but were 67% for miscanthus. Because 50% of observed miscanthus belowground biomass is below 30 cm depth, it may be necessary to increase the depth of modeled soil C dynamics to reconcile modeled belowground C inputs with measured. Modeled removal of aboveground corn residue (25–100%) resulted in C stock reduction in areas of corn–corn–soybean rotation under conventional tillage, while no‐till management lessoned this impact. In sugarcane, soil C stocks were reduced when total aboveground residue was removed at one site, while partial removal of sugarcane residue did not reduce soil C stocks in either area. This study suggests that aboveground crop residues were the main C‐residue source to the soil in the current bioethanol sector (corn and sugarcane) and the indiscriminate removal of crop residues to produce cellulosic biofuels can reduce soil C stocks and reduce the environmental benefits of bioenergy. Moreover, a switch to feedstocks such as miscanthus with more allocation to belowground C could increase soil C stocks at a much faster rate.


Global Change Biology | 2016

Nitrogen deposition and greenhouse gas emissions from grasslands: uncertainties and future directions

Nuria Gomez-Casanovas; Tara W. Hudiburg; Carl J. Bernacchi; William J. Parton; Evan H. DeLucia

We applied and compared bottom-up (process model-based) and top-down (atmospheric inversion-based) scaling approaches to evaluate the spatial and temporal patterns of net ecosystem production (NEP) over a 2.5 × 10 5 km 2 area (the state of Oregon) in the western United States. Both approaches indicated a carbon sink over this heterogeneous region in 2003 (a relatively warm, dry year in western Oregon) and 2007 (near normal), with carbon uptake primarily in forested and agricultural areas. The statewide mean NEP for 2007 using the bottom-up approach was 80 gC m -2 yr -1 , which compares with 145 gC m -2 yr -1 for the top-down approach. Seasonality of daily NEP at the ecoregion scale showed similar patterns across the two approaches, but with less sensitivity to seasonal drought in the top-down model. In 2003, simulated annual NEP was lower than in 2007 for both scaling approaches, but the reduction was stronger with the bottom-up approach. Estimates of mean NEP on forested lands from a forest inventory approach, and from the CarbonTracker inversion scheme, bracketed that of our bottom-up approach (ratios to bottom-up estimates were 1.3 and 0.3, respectively). These results support the need for a multiple constraint approach to evaluation of regional trace gas budgets. DOI: 10.1111/j.1600-0889.2011.00525.x


Plant Ecology & Diversity | 2013

Thinning effects on forest productivity: consequences of preserving old forests and mitigating impacts of fire and drought

Beverly E. Law; Tara W. Hudiburg; Sebastiaan Luyssaert

Increases in atmospheric nitrogen deposition (Ndep) can strongly affect the greenhouse gas (GHG; CO2, CH4, and N2O) sink capacity of grasslands as well as other terrestrial ecosystems. Robust predictions of the net GHG sink strength of grasslands depend on how experimental N loads compare to projected Ndep rates, and how accurately the relationship between GHG fluxes and Ndep is characterized. A literature review revealed that the vast majority of experimental N loads were higher than levels these ecosystems are predicted to experience in the future. Using a process-based biogeochemical model, we predicted that low levels of Ndep either enhanced or reduced the net GHG sink strength of most grasslands, but as experimental N loads continued to increase, grasslands transitioned to a N saturation-decline stage, where the sensitivity of GHG exchange to further increases in Ndep declined. Most published studies represented treatments well into the N saturation-decline stage. Our model results predict that the responses of GHG fluxes to N are highly nonlinear and that the N saturation thresholds for GHGs varied greatly among grasslands and with fire management. We predict that during the 21st century some grasslands will be in the N limitation stage where others will transition into the N saturation-decline stage. The linear relationship between GHG sink strength and N load assumed by most studies can overestimate or underestimate predictions of the net GHG sink strength of grasslands depending on their N baseline status. The next generation of global change experiments should be designed at multiple N loads consistent with future Ndep rates to improve our empirical understanding and predictive ability.

Collaboration


Dive into the Tara W. Hudiburg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Warren B. Cohen

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter E. Thornton

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam D. Miller

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge