Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Uvin is active.

Publication


Featured researches published by Sarah Uvin.


IEEE Journal of Selected Topics in Quantum Electronics | 2014

Silicon-Based Photonic Integration Beyond the Telecommunication Wavelength Range

Günther Roelkens; Utsav Dave; Alban Gassenq; Nannicha Hattasan; Chen Hu; Bart Kuyken; François Leo; Aditya Malik; Muhammad Muneeb; Eva Ryckeboer; Dorian Sanchez; Sarah Uvin; Ruijun Wang; Zeger Hens; Roel Baets; Yosuke Shimura; Federica Gencarelli; Benjamin Vincent; Roger Loo; Joris Van Campenhout; L. Cerutti; Jean-Baptiste Rodriguez; E. Tournié; Xia Chen; Milos Nedeljkovic; Goran Z. Mashanovich; Li Shen; Noel Healy; Anna C. Peacock; Xiaoping Liu

In this paper we discuss silicon-based photonic integrated circuit technology for applications beyond the telecommunication wavelength range. Silicon-on-insulator and germanium-on-silicon passive waveguide circuits are described, as well as the integration of III-V semiconductors, IV-VI colloidal nanoparticles and GeSn alloys on these circuits for increasing the functionality. The strong nonlinearity of silicon combined with the low nonlinear absorption in the mid-infrared is exploited to generate picosecond pulse based supercontinuum sources, optical parametric oscillators and wavelength translators connecting the telecommunication wavelength range and the mid-infrared.


Optical Materials Express | 2013

Silicon-based heterogeneous photonic integrated circuits for the mid-infrared

Günther Roelkens; Utsav Dave; Alban Gassenq; Nannicha Hattasan; Chen Hu; Bart Kuyken; François Leo; Aditya Malik; Muhammad Muneeb; Eva Ryckeboer; Sarah Uvin; Zeger Hens; Roel Baets; Yosuke Shimura; Federica Gencarelli; Benjamin Vincent; Roger Loo; Joris Van Campenhout; L. Cerutti; Jean Baptiste Rodriguez; E. Tournié; Xia Chen; Milos Nedeljkovic; Goran Z. Mashanovich; Li Shen; Noel Healy; Anna C. Peacock; Xiaoping Liu; Richard M. Osgood; W. M. J. Green

In this paper we present our recent work on mid-infrared photonic integrated circuits for spectroscopic sensing applications. We discuss the use of silicon-based photonic integrated circuits for this purpose and detail how a variety of optical functions in the mid-infrared besides passive waveguiding and filtering can be realized, either relying on nonlinear optics or on the integration of other materials such as GaSb-based compound semiconductors, GeSn epitaxy and PbS colloidal nanoparticles.


Optics Express | 2013

Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source.

Utsav Dave; Sarah Uvin; Bart Kuyken; Shankar Kumar Selvaraja; François Leo; Günther Roelkens

A 1,000 nm wide supercontinuum, spanning from 1470 nm in the telecom band to 2470 nm in the mid-infrared is demonstrated in a 800 nm x 220 nm 1 cm long hydrogenated amorphous silicon strip waveguide. The pump source was a picosecond Thulium doped fiber laser centered at 1950 nm. The real part of the nonlinear parameter of this waveguide at 1950 nm is measured to be 100 ± 10 W -1m-1, while the imaginary part of the nonlinear parameter is measured to be 1.2 ± 0.2 W-1m-1. The supercontinuum is stable over a period of at least several hours, as the hydrogenated amorphous silicon waveguides do not degrade when exposed to the high power picosecond pulse train.


Optics Express | 2015

Narrow-linewidth short-pulse III-V-on-silicon mode-locked lasers based on a linear and ring cavity geometry

Shahram Keyvaninia; Sarah Uvin; Martijn Tassaert; Xin Fu; Sylwester Latkowski; J Marien; L Thomassen; Francois Lelarge; Guang-Hua Duan; Peter Verheyen; Guy Lepage; J. Van Campenhout; Eajm Erwin Bente; Günther Roelkens

Picosecond-pulse III-V-on-silicon mode-locked lasers based on linear and ring extended cavity geometries are presented. In passive mode-locked operation a 12 kHz -3dB linewidth of the fundamental RF tone at 4.7 GHz is obtained for the linear cavity geometry and 16 kHz for the ring cavity geometry. Stabilization of the repetition rate of these devices using hybrid mode-locking is also demonstrated.


Optics Express | 2016

Narrow line width frequency comb source based on an injection-locked III–V-on-silicon mode-locked laser

Sarah Uvin; Shahram Keyvaninia; Francois Lelarge; Guang-Hua Duan; Bart Kuyken; Günther Roelkens

In this paper, we report the optical injection locking of an L-band (∼1580 nm) 4.7 GHz III-V-on-silicon mode-locked laser with a narrow line width continuous wave (CW) source. This technique allows us to reduce the MHz optical line width of the mode-locked laser longitudinal modes down to the line width of the source used for injection locking, 50 kHz. We show that more than 50 laser lines generated by the mode-locked laser are coherent with the narrow line width CW source. Two locking techniques are explored. In a first approach a hybrid mode-locked laser is injection-locked with a CW source. In a second approach, light from a modulated CW source is injected in a passively mode-locked laser cavity. The realization of such a frequency comb on a chip enables transceivers for high spectral efficiency optical communication.


Scientific Reports | 2018

Low-Loss Photonic Reservoir Computing with Multimode Photonic Integrated Circuits

Andrew Katumba; Jelle Heyvaert; Bendix Schneider; Sarah Uvin; Joni Dambre; Peter Bienstman

We present a numerical study of a passive integrated photonics reservoir computing platform based on multimodal Y-junctions. We propose a novel design of this junction where the level of adiabaticity is carefully tailored to capture the radiation loss in higher-order modes, while at the same time providing additional mode mixing that increases the richness of the reservoir dynamics. With this design, we report an overall average combination efficiency of 61% compared to the standard 50% for the single-mode case. We demonstrate that with this design, much more power is able to reach the distant nodes of the reservoir, leading to increased scaling prospects. We use the example of a header recognition task to confirm that such a reservoir can be used for bit-level processing tasks. The design itself is CMOS-compatible and can be fabricated through the known standard fabrication procedures.


Optics Express | 2016

Novel adiabatic tapered couplers for active III-V/SOI devices fabricated through transfer printing.

Sören Dhoore; Sarah Uvin; Dries Van Thourhout; Geert Morthier; Günther Roelkens

We present the design of two novel adiabatic tapered coupling structures that allow efficient and alignment tolerant mode conversion between a III-V membrane waveguide and a single-mode SOI waveguide in active heterogeneously integrated devices. Both proposed couplers employ a broad intermediate waveguide to facilitate highly alignment tolerant coupling. This robustness is needed to comply with the current misalignment tolerance requirements for high-throughput transfer printing. The proposed coupling structures are expected to pave the way for transfer-printing-based heterogeneous integration of active III-V devices such as semiconductor optical amplifiers (SOAs), photodetectors, electro-absorption modulators (EAMs) and single wavelength lasers on silicon photonic integrated circuits.


Optics Express | 2018

High-alignment-accuracy transfer printing of passive silicon waveguide structures

Nan Ye; Grigorij Muliuk; Antonio Jose Trindade; Chris Bower; Jing Zhang; Sarah Uvin; Dries Van Thourhout; Günther Roelkens

We demonstrate the transfer printing of passive silicon devices on a silicon-on-insulator target waveguide wafer. Adiabatic taper structures and directional coupler structures were designed for 1310 nm and 1600 nm wavelength coupling tolerant for ± 1 µm misalignment. The release of silicon devices from the silicon substrate was realized by underetching the buried oxide layer while protecting the back-end stack. Devices were successfully picked by a PDMS stamp, by breaking the tethers that kept the silicon coupons in place on the source substrate, and printed with high alignment accuracy on a silicon photonic target wafer. Coupling losses of -1.5 +/- 0.5 dB for the adiabatic taper at 1310 nm wavelength and -0.5 +/- 0.5 dB for the directional coupler at 1600 nm wavelength are obtained.


photonics society summer topical meeting series | 2015

III-V-on-silicon photonic integrated circuits for optical interconnects

Günther Roelkens; Shahram Keyvaninia; Y. De Koninck; Sarah Uvin; Amin Abassi; K. Van Gasse; Zhechao Wang; Geert Morthier; D. Van Thourhout; Roel Baets

We review our work on the heterogeneous integration of III-V laser sources on the silicon photonics platform. These building blocks enable the realization of fully integrated silicon photonic transceivers for optical interconnect applications.


Proceedings of SPIE | 2013

Mid-IR heterogeneous silicon photonics

Günther Roelkens; Utsav Dave; Alban Gassenq; Nannicha Hattasan; Chen Hu; Bart Kuyken; François Leo; Aditya Malik; Muhammad Muneeb; Eva Ryckeboer; Sarah Uvin; Zeger Hens; Roel Baets; Yosuke Shimura; Federica Gencarelli; Benjamin Vincent; Roger Loo; Joris Van Campenhout; L. Cerutti; Jean-Baptiste Rodriguez; E. Tournié; Xia Chen; Milos Nedeljkovic; Goran Z. Mashanovich; Li Shen; Noel Healy; Anna C. Peacock; Xiaoping Liu; Richard M. Osgood; William M. J. Green

In this paper we discuss silicon-based photonic integrated circuit technology for applications beyond the telecommunication wavelength range. Silicon-on-insulator and germanium-on-silicon passive waveguide circuits are described, as well as the integration of III-V semiconductors, IV-VI colloidal nanoparticle films and GeSn alloys on these circuits for increasing the functionality. The strong nonlinearity of silicon combined with the low nonlinear absorption in the mid-infrared is exploited to generate picosecond pulse based supercontinuum sources and optical parametric oscillators that can be used as spectroscopic sensor sources.

Collaboration


Dive into the Sarah Uvin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joris Van Campenhout

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge