Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarkis K. Mazmanian is active.

Publication


Featured researches published by Sarkis K. Mazmanian.


Nature Reviews Immunology | 2009

The gut microbiota shapes intestinal immune responses during health and disease

June L. Round; Sarkis K. Mazmanian

Immunological dysregulation is the cause of many non-infectious human diseases such as autoimmunity, allergy and cancer. The gastrointestinal tract is the primary site of interaction between the host immune system and microorganisms, both symbiotic and pathogenic. In this Review we discuss findings indicating that developmental aspects of the adaptive immune system are influenced by bacterial colonization of the gut. We also highlight the molecular pathways that mediate host–symbiont interactions that regulate proper immune function. Finally, we present recent evidence to support that disturbances in the bacterial microbiota result in dysregulation of adaptive immune cells, and this may underlie disorders such as inflammatory bowel disease. This raises the possibility that the mammalian immune system, which seems to be designed to control microorganisms, is in fact controlled by microorganisms.


Cell | 2005

An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System

Sarkis K. Mazmanian; Cui Hua Liu; Arthur O. Tzianabos; Dennis L. Kasper

The mammalian gastrointestinal tract harbors a complex ecosystem consisting of countless bacteria in homeostasis with the host immune system. Shaped by evolution, this partnership has potential for symbiotic benefit. However, the identities of bacterial molecules mediating symbiosis remain undefined. Here we show that, during colonization of animals with the ubiquitous gut microorganism Bacteroides fragilis, a bacterial polysaccharide (PSA) directs the cellular and physical maturation of the developing immune system. Comparison with germ-free animals reveals that the immunomodulatory activities of PSA during B. fragilis colonization include correcting systemic T cell deficiencies and T(H)1/T(H)2 imbalances and directing lymphoid organogenesis. A PSA mutant of B. fragilis does not restore these immunologic functions. PSA presented by intestinal dendritic cells activates CD4+ T cells and elicits appropriate cytokine production. These findings provide a molecular basis for host-bacterial symbiosis and reveal the archetypal molecule of commensal bacteria that mediates development of the host immune system.


Nature | 2008

A microbial symbiosis factor prevents intestinal inflammatory disease.

Sarkis K. Mazmanian; June L. Round; Dennis L. Kasper

Humans are colonized by multitudes of commensal organisms representing members of five of the six kingdoms of life; however, our gastrointestinal tract provides residence to both beneficial and potentially pathogenic microorganisms. Imbalances in the composition of the bacterial microbiota, known as dysbiosis, are postulated to be a major factor in human disorders such as inflammatory bowel disease. We report here that the prominent human symbiont Bacteroides fragilis protects animals from experimental colitis induced by Helicobacter hepaticus, a commensal bacterium with pathogenic potential. This beneficial activity requires a single microbial molecule (polysaccharide A, PSA). In animals harbouring B. fragilis not expressing PSA, H. hepaticus colonization leads to disease and pro-inflammatory cytokine production in colonic tissues. Purified PSA administered to animals is required to suppress pro-inflammatory interleukin-17 production by intestinal immune cells and also inhibits in vitro reactions in cell cultures. Furthermore, PSA protects from inflammatory disease through a functional requirement for interleukin-10-producing CD4+ T cells. These results show that molecules of the bacterial microbiota can mediate the critical balance between health and disease. Harnessing the immunomodulatory capacity of symbiosis factors such as PSA might potentially provide therapeutics for human inflammatory disorders on the basis of entirely novel biological principles.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota.

June L. Round; Sarkis K. Mazmanian

To maintain intestinal health, the immune system must faithfully respond to antigens from pathogenic microbes while limiting reactions to self-molecules. The gastrointestinal tract represents a unique challenge to the immune system, as it is permanently colonized by a diverse amalgam of bacterial phylotypes producing multitudes of foreign microbial products. Evidence from human and animal studies indicates that inflammatory bowel disease results from uncontrolled inflammation to the intestinal microbiota. However, molecular mechanisms that actively promote mucosal tolerance to the microbiota remain unknown. We report herein that a prominent human commensal, Bacteroides fragilis, directs the development of Foxp3+ regulatory T cells (Tregs) with a unique “inducible” genetic signature. Monocolonization of germ-free animals with B. fragilis increases the suppressive capacity of Tregs and induces anti-inflammatory cytokine production exclusively from Foxp3+ T cells in the gut. We show that the immunomodulatory molecule, polysaccharide A (PSA), of B. fragilis mediates the conversion of CD4+ T cells into Foxp3+ Treg cells that produce IL-10 during commensal colonization. Functional Foxp3+ Treg cells are also produced by PSA during intestinal inflammation, and Toll-like receptor 2 signaling is required for both Treg induction and IL-10 expression. Most significantly, we show that PSA is not only able to prevent, but also cure experimental colitis in animals. Our results therefore demonstrate that B. fragilis co-opts the Treg lineage differentiation pathway in the gut to actively induce mucosal tolerance.


Cell | 2013

Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders

Elaine Y. Hsiao; Sara Mcbride; Sophia Hsien; Gil Sharon; Embriette R. Hyde; Tyler McCue; Julian A. Codelli; Janet Chow; Sarah E. Reisman; Joseph F. Petrosino; Paul H. Patterson; Sarkis K. Mazmanian

Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders.


Science | 2011

The Toll-Like Receptor 2 Pathway Establishes Colonization by a Commensal of the Human Microbiota

June L. Round; S. Melanie Lee; Jennifer Li; Gloria Tran; Bana Jabri; Talal A. Chatila; Sarkis K. Mazmanian

Signaling through innate immune receptors promotes commensal bacteria colonization of the gut. Mucosal surfaces constantly encounter microbes. Toll-like receptors (TLRs) mediate recognition of microbial patterns to eliminate pathogens. By contrast, we demonstrate that the prominent gut commensal Bacteroides fragilis activates the TLR pathway to establish host-microbial symbiosis. TLR2 on CD4+ T cells is required for B. fragilis colonization of a unique mucosal niche in mice during homeostasis. A symbiosis factor (PSA, polysaccharide A) of B. fragilis signals through TLR2 directly on Foxp3+ regulatory T cells to promote immunologic tolerance. B. fragilis lacking PSA is unable to restrain T helper 17 cell responses and is defective in niche-specific mucosal colonization. Therefore, commensal bacteria exploit the TLR pathway to actively suppress immunity. We propose that the immune system can discriminate between pathogens and the microbiota through recognition of symbiotic bacterial molecules in a process that engenders commensal colonization.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Animals in a bacterial world, a new imperative for the life sciences

Margaret J. McFall-Ngai; Michael G. Hadfield; Thomas C. G. Bosch; Hannah V. Carey; Tomislav Domazet-Lošo; Angela E. Douglas; Nicole Dubilier; Gérard Eberl; Tadashi Fukami; Scott F. Gilbert; Ute Hentschel; Nicole King; Staffan Kjelleberg; Andrew H. Knoll; Natacha Kremer; Sarkis K. Mazmanian; Jessica L. Metcalf; Kenneth H. Nealson; Naomi E. Pierce; John F. Rawls; Ann H. Reid; Edward G. Ruby; Mary E. Rumpho; Jon G. Sanders; Diethard Tautz; Jennifer J. Wernegreen

In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal–bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other’s genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal–bacterial interaction. As answers to these fundamental questions emerge, all biologists will be challenged to broaden their appreciation of these interactions and to include investigations of the relationships between and among bacteria and their animal partners as we seek a better understanding of the natural world.


Cell | 2007

Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system.

Wendy S. Garrett; Graham M. Lord; Shivesh Punit; Geanncarlo Lugo-Villarino; Sarkis K. Mazmanian; Susumu Ito; Jonathan N. Glickman; Laurie H. Glimcher

Inflammatory bowel disease (IBD) has been attributed to overexuberant host immunity or the emergence of harmful intestinal flora. The transcription factor T-bet orchestrates inflammatory genetic programs in both adaptive and innate immunity. We describe a profound and unexpected function for T-bet in influencing the behavior of host inflammatory activity and commensal bacteria. T-bet deficiency in the innate immune system results in spontaneous and communicable ulcerative colitis in the absence of adaptive immunity and increased susceptibility to colitis in immunologically intact hosts. T-bet controls the response of the mucosal immune system to commensal bacteria by regulating TNF-alpha production in colonic dendritic cells, critical for colonic epithelial barrier maintenance. Loss of T-bet influences bacterial populations to become colitogenic, and this colitis is communicable to genetically intact hosts. These findings reveal a novel function for T-bet as a peacekeeper of host-commensal relationships and provide new perspectives on the pathophysiology of IBD.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis

Yun Kyung Lee; Juscilene S. Menezes; Yoshinori Umesaki; Sarkis K. Mazmanian

Although the effects of commensal bacteria on intestinal immune development seem to be profound, it remains speculative whether the gut microbiota influences extraintestinal biological functions. Multiple sclerosis (MS) is a devastating autoimmune disease leading to progressive deterioration of neurological function. Although the cause of MS is unknown, microorganisms seem to be important for the onset and/or progression of disease. However, it is unclear how microbial colonization, either symbiotic or infectious, affects autoimmunity. Herein, we investigate a role for the microbiota during the induction of experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Mice maintained under germ-free conditions develop significantly attenuated EAE compared with conventionally colonized mice. Germ-free animals, induced for EAE, produce lower levels of the proinflammatory cytokines IFN-γ and IL-17A in both the intestine and spinal cord but display a reciprocal increase in CD4+CD25+Foxp3+ regulatory T cells (Tregs). Mechanistically, we show that gut dendritic cells from germ-free animals are reduced in the ability to stimulate proinflammatory T cell responses. Intestinal colonization with segmented filamentous bacteria (SFB) is known to promote IL-17 production in the gut; here, we show that SFBs also induced IL-17A–producing CD4+ T cells (Th17) in the CNS. Remarkably, germ-free animals harboring SFBs alone developed EAE, showing that gut bacteria can affect neurologic inflammation. These findings reveal that the intestinal microbiota profoundly impacts the balance between pro- and antiinflammatory immune responses during EAE and suggest that modulation of gut bacteria may provide therapeutic targets for extraintestinal inflammatory diseases such as MS.


Science | 2010

Has the Microbiota Played a Critical Role in the Evolution of the Adaptive Immune System

Yun Kyung Lee; Sarkis K. Mazmanian

A Gutsy Analysis Efforts to sequence the human microbiome—the genomes of all the microbes that inhabit our bodies—have demonstrated its enormous diversity. Analyses to probe the various functions of the microbiota, particularly of those that reside in the gut, have revealed that our microbiota has a profound impact on the development and function of our immune systems. Lee and Mazmanian (p. 1768) review how the microbiota influences the development of the adaptive immune system. Specific species and families of microbiota support the differentiation of particular populations of T cells, and alterations in intestinal microbiota affect the development of inflammation and autoimmunity. Although microbes have been classically viewed as pathogens, it is now well established that the majority of host-bacterial interactions are symbiotic. During development and into adulthood, gut bacteria shape the tissues, cells, and molecular profile of our gastrointestinal immune system. This partnership, forged over many millennia of coevolution, is based on a molecular exchange involving bacterial signals that are recognized by host receptors to mediate beneficial outcomes for both microbes and humans. We explore how specific aspects of the adaptive immune system are influenced by intestinal commensal bacteria. Understanding the molecular mechanisms that mediate symbiosis between commensal bacteria and humans may redefine how we view the evolution of adaptive immunity and consequently how we approach the treatment of numerous immunologic disorders.

Collaboration


Dive into the Sarkis K. Mazmanian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elaine Y. Hsiao

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Paul H. Patterson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Janet Chow

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Rob Knight

University of California

View shared research outputs
Top Co-Authors

Avatar

Sara Mcbride

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hung Ton-That

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Melanie Lee

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Arya Khosravi

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge