Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott D. Michaels is active.

Publication


Featured researches published by Scott D. Michaels.


The Plant Cell | 1999

FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering

Scott D. Michaels; Richard M. Amasino

Winter-annual ecotypes of Arabidopsis are relatively late flowering, unless the flowering of these ecotypes is promoted by exposure to cold (vernalization). This vernalization-suppressible, late-flowering phenotype results from the presence of dominant, late-flowering alleles at two loci, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). In this study, we report that flc null mutations result in early flowering, demonstrating that the role of active FLC alleles is to repress flowering. FLC was isolated by positional cloning and found to encode a novel MADS domain protein. The levels of FLC mRNA are regulated positively by FRI and negatively by LUMINIDEPENDENS. FLC is also negatively regulated by vernalization. Overexpression of FLC from a heterologous promoter is sufficient to delay flowering in the absence of an active FRI allele. We propose that the level of FLC activity acts through a rheostat-like mechanism to control flowering time in Arabidopsis and that modulation of FLC expression is a component of the vernalization response.


The Plant Cell | 2001

Loss of FLOWERING LOCUS C Activity Eliminates the Late-Flowering Phenotype of FRIGIDA and Autonomous Pathway Mutations but Not Responsiveness to Vernalization

Scott D. Michaels; Richard M. Amasino

The MADS domain–containing transcription factor FLOWERING LOCUS C (FLC) acts as an inhibitor of flowering and is a convergence point for several pathways that regulate flowering time in Arabidopsis. In naturally occurring late-flowering ecotypes, the FRIGIDA (FRI) gene acts to increase FLC levels, whereas the autonomous floral promotion pathway and vernalization act to reduce FLC expression. Previous work has shown that the Landsberg erecta allele of FLC, which is not a null allele, is able to partially suppress the late-flowering phenotype of FRIGIDA and mutations in the autonomous pathway. In this study, using a null allele of FLC, we show that the late-flowering phenotype of FRIGIDA and autonomous pathway mutants are eliminated in the absence of FLC activity. In addition, we have found that the downregulation of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 by FRI and autonomous pathway mutants also is mediated by FLC. Complete loss of FLC function, however, does not eliminate the effect of vernalization. Thus, FRI and the autonomous pathway may act solely to regulate FLC expression, whereas vernalization is able to promote flowering via FLC-dependent and FLC-independent mechanisms.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis

Scott D. Michaels; Yuehui He; Katia C. Scortecci; Richard M. Amasino

Plant species have evolved a wide variety of flowering habits, each adapted to maximize reproductive success in their local environment. Even within a species, accessions from different environments can exhibit markedly different flowering behavior. In Arabidopsis, some accessions are rapid-cycling summer annuals, whereas others accessions are late flowering and vernalization responsive and thus behave as winter annuals. Two genes, FLOWERING LOCUS C (FLC) and FRIGIDA (FRI), interact synergistically to confer the winter-annual habit. Previous work has shown that many summer-annual accessions contain null mutations in the FRI gene; thus it appears that these summer-annual accessions have arisen from winter-annual ancestors by losing FRI function. In this work we demonstrate that naturally occurring allelic variation in FLC has provided another route to the evolution of summer-annual flowering behavior in Arabidopsis. We have identified two summer-annual accessions, Da (1)-12 and Shakhdara, that contain functional alleles of FRI, but are early flowering because of weak alleles of FLC. We have also determined that the weak allele of FLC found in Landsberg erecta is naturally occurring. Unlike accessions that have arisen because of loss-of-function mutations in FRI, the FLC alleles from Da (1)-12, Shakhdara, and Landsberg erecta are not nulls; however, they exhibit lower steady-state mRNA levels than strong alleles of FLC. Sequence analysis indicates that these weak alleles of FLC have arisen independently at least twice during the course of evolution.


The Plant Cell | 1994

Isolation of LUMINIDEPENDENS: A Gene Involved in the Control of Flowering Time in Arabidopsis

Ilha Lee; Milo J. Aukerman; Sherrie L. Gore; Karin N. Lohman; Scott D. Michaels; Louis M. Weaver; Manorama C. John; Kenneth A. Feldmann; Richard M. Amasino

Plants have evolved the ability to regulate flowering in response to environmental signals such as temperature and photoperiod. The physiology and genetics of floral induction have been studied extensively, but the molecular mechanisms that underlie this process are poorly understood. To study this process, we isolated a gene, LUMINIDEPENDENS (LD), that is involved in the timing of flowering in Arabidopsis. Mutations in this gene render Arabidopsis late flowering and appear to affect light perception. The late-flowering phenotype of the ld mutation was partially suppressed by vernalization. Genomic and cDNA clones of the LD gene were characterized. The predicted amino acid sequence of the LD protein contains 953 residues and includes two putative bipartite nuclear localization signals and a glutamine-rich region.


Plant Physiology | 2005

Integration of Flowering Signals in Winter-Annual Arabidopsis

Scott D. Michaels; Edward Himelblau; Sang Yeol Kim; Fritz M. Schomburg; Richard M. Amasino

Photoperiod is the primary environmental factor affecting flowering time in rapid-cycling accessions of Arabidopsis (Arabidopsis thaliana). Winter-annual Arabidopsis, in contrast, have both a photoperiod and a vernalization requirement for rapid flowering. In winter annuals, high levels of the floral inhibitor FLC (FLOWERING LOCUS C) suppress flowering prior to vernalization. FLC acts to delay flowering, in part, by suppressing expression of the floral promoter SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1). Vernalization leads to a permanent epigenetic suppression of FLC. To investigate how winter-annual accessions integrate signals from the photoperiod and vernalization pathways, we have examined activation-tagged alleles of FT and the FT homolog, TSF (TWIN SISTER OF FT), in a winter-annual background. Activation of FT or TSF strongly suppresses the FLC-mediated late-flowering phenotype of winter annuals; however, FT and TSF overexpression does not affect FLC mRNA levels. Rather, FT and TSF bypass the block to flowering created by FLC by activating SOC1 expression. We have also found that FLC acts as a dosage-dependent inhibitor of FT expression. Thus, the integration of flowering signals from the photoperiod and vernalization pathways occurs, at least in part, through the regulation of FT, TSF, and SOC1.


The Plant Cell | 2005

Establishment of the Vernalization-Responsive, Winter-Annual Habit in Arabidopsis Requires a Putative Histone H3 Methyl Transferase

Sang Yeol Kim; Yuehui He; Yannick Jacob; Yoo-Sun Noh; Scott D. Michaels; Richard M. Amasino

Winter-annual accessions of Arabidopsis thaliana are often characterized by a requirement for exposure to the cold of winter to initiate flowering in the spring. The block to flowering prior to cold exposure is due to high levels of the flowering repressor FLOWERING LOCUS C (FLC). Exposure to cold promotes flowering through a process known as vernalization that epigenetically represses FLC expression. Rapid-cycling accessions typically have low levels of FLC expression and therefore do not require vernalization. A screen for mutants in which a winter-annual Arabidopsis is converted to a rapid-cycling type has identified a putative histone H3 methyl transferase that is required for FLC expression. Lesions in this methyl transferase, EARLY FLOWERING IN SHORT DAYS (EFS), result in reduced levels of histone H3 Lys 4 trimethylation in FLC chromatin. EFS is also required for expression of other genes in the FLC clade, such as MADS AFFECTING FLOWERING2 and FLOWERING LOCUS M. The requirement for EFS to permit expression of several FLC clade genes accounts for the ability of efs lesions to suppress delayed flowering due to the presence of FRIGIDA, autonomous pathway mutations, or growth in noninductive photoperiods. efs mutants exhibit pleiotropic phenotypes, indicating that the role of EFS is not limited to the regulation of flowering time.


Science | 2012

MORC Family ATPases Required for Heterochromatin Condensation and Gene Silencing

Guillaume Moissiard; Shawn J. Cokus; Joshua Cary; Suhua Feng; Allison C. Billi; Hume Stroud; Dylan Husmann; Ye Zhan; Bryan R. Lajoie; Rachel Patton McCord; Christopher J. Hale; Wei Feng; Scott D. Michaels; Alison R. Frand; Matteo Pellegrini; Job Dekker; John Kim; Steven E. Jacobsen

To Silence or Not to Silence Repressed genes commonly have methylated DNA, and/or covalent histone modifications associated with silent chromatin, and/or associated small interfering (si)RNAs. All three features are components of gene-silencing systems (see the Perspective by Jacob and Martienssen). In a screen for components of DNA methylation gene-silencing systems in the flowering plant, Moissiard et al. (p. 1448, published online 3 May) identified the genes AtMoRC1 and AtMORC6, which are homologs of the mouse Microrchidia1 gene. AtMORC1 and AtMORC6 are involved in silencing transposable elements and genes corresponding to DNA-methylated loci, and yet neither gene is required for maintenance of DNA methylation. Instead, AtMoRC1 and AtMORC6 are related to proteins that remodel chromatin superstructure, and they seem to control gene-silencing through the higher-order compaction of methylated and silent chromatin. Qian et al. (p. 1445) identified an Arabidopsis gene, IDM1 (increased DNA methylation 1), that is involved in regulating DNA methylation at loci enriched for repeats and multigene families containing highly homologous genes. IDM1 protects target genes from DNA silencing and recognizes both histone H3 and methylated DNA at target loci and is able to acetylate histone H3. A conserved family of adenosine triphosphatases predicted to catalyze alterations in chromosome superstructure is required for gene silencing. Transposable elements (TEs) and DNA repeats are commonly targeted by DNA and histone methylation to achieve epigenetic gene silencing. We isolated mutations in two Arabidopsis genes, AtMORC1 and AtMORC6, which cause derepression of DNA-methylated genes and TEs but no losses of DNA or histone methylation. AtMORC1 and AtMORC6 are members of the conserved Microrchidia (MORC) adenosine triphosphatase (ATPase) family, which are predicted to catalyze alterations in chromosome superstructure. The atmorc1 and atmorc6 mutants show decondensation of pericentromeric heterochromatin, increased interaction of pericentromeric regions with the rest of the genome, and transcriptional defects that are largely restricted to loci residing in pericentromeric regions. Knockdown of the single MORC homolog in Caenorhabditis elegans also impairs transgene silencing. We propose that the MORC ATPases are conserved regulators of gene silencing in eukaryotes.


Nature Structural & Molecular Biology | 2009

ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing

Yannick Jacob; Suhua Feng; Chantal LeBlanc; Yana V. Bernatavichute; Hume Stroud; Shawn J. Cokus; Lianna M. Johnson; Matteo Pellegrini; Steven E. Jacobsen; Scott D. Michaels

Constitutive heterochromatin in Arabidopsis thaliana is marked by repressive chromatin modifications, including DNA methylation, histone H3 dimethylation at Lys9 (H3K9me2) and monomethylation at Lys27 (H3K27me1). The enzymes catalyzing DNA methylation and H3K9me2 have been identified; alterations in these proteins lead to reactivation of silenced heterochromatic elements. The enzymes responsible for heterochromatic H3K27me1, in contrast, remain unknown. Here we show that the divergent SET-domain proteins ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) and ATXR6 have H3K27 monomethyltransferase activity, and atxr5 atxr6 double mutants have reduced H3K27me1 in vivo and show partial heterochromatin decondensation. Mutations in atxr5 and atxr6 also lead to transcriptional activation of repressed heterochromatic elements. Notably, H3K9me2 and DNA methylation are unaffected in double mutants. These results indicate that ATXR5 and ATXR6 form a new class of H3K27 methyltransferases and that H3K27me1 represents a previously uncharacterized pathway required for transcriptional repression in Arabidopsis.


Current Opinion in Plant Biology | 2009

Flowering time regulation produces much fruit

Scott D. Michaels

Many of the molecular details regarding the promotion of flowering in response to prolonged exposure to cold temperatures (vernalization) and daylength have recently been elucidated in Arabidopsis. The daylength and vernalization pathway converge in the regulation of floral promoters referred to as floral integrators. In the meristem, vernalization promotes flowering through the epigenetic repression of the floral repressor FLOWERING LOCUS C. This allows for the induction of floral integrators by CONSTANS under inductive long days. In the vasculature of leaves, CONSTANS protein is produced only in long days where it acts to promote the expression of FLOWERING LOCUS T (FT). FT protein is then translocated to the meristem where it acts to promote floral induction. Thus a detailed molecular framework for the regulation of flowering time has now been established in Arabidopsis.


Plant Physiology | 2010

The Timing of Flowering

Richard M. Amasino; Scott D. Michaels

The initiation of flowering is a critical life-history trait; plants have presumably evolved to flower at a time of year that ensures maximal reproductive success in a given region. Decades of physiological studies have revealed that flowering is initiated in response to both environmental cues and

Collaboration


Dive into the Scott D. Michaels's collaboration.

Top Co-Authors

Avatar

Richard M. Amasino

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yannick Jacob

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang Yeol Kim

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Wei Feng

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Fritz M. Schomburg

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Hume Stroud

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge