Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hume Stroud is active.

Publication


Featured researches published by Hume Stroud.


Nature | 2010

Relationship between nucleosome positioning and DNA methylation

Ramakrishna K. Chodavarapu; Suhua Feng; Yana V. Bernatavichute; Pao-Yang Chen; Hume Stroud; Yanchun Yu; Jonathan Hetzel; Frank Kuo; Jin Kim; Shawn J. Cokus; David Casero; María Bernal; Peter Huijser; Amander T. Clark; Ute Krämer; Sabeeha S. Merchant; Xiaoyu Zhang; Steven E. Jacobsen; Matteo Pellegrini

Nucleosomes compact and regulate access to DNA in the nucleus, and are composed of approximately 147 bases of DNA wrapped around a histone octamer. Here we report a genome-wide nucleosome positioning analysis of Arabidopsis thaliana using massively parallel sequencing of mononucleosomes. By combining this data with profiles of DNA methylation at single base resolution, we identified 10-base periodicities in the DNA methylation status of nucleosome-bound DNA and found that nucleosomal DNA was more highly methylated than flanking DNA. These results indicate that nucleosome positioning influences DNA methylation patterning throughout the genome and that DNA methyltransferases preferentially target nucleosome-bound DNA. We also observed similar trends in human nucleosomal DNA, indicating that the relationships between nucleosomes and DNA methyltransferases are conserved. Finally, as has been observed in animals, nucleosomes were highly enriched on exons, and preferentially positioned at intron–exon and exon–intron boundaries. RNA polymerase II (Pol II) was also enriched on exons relative to introns, consistent with the hypothesis that nucleosome positioning regulates Pol II processivity. DNA methylation is also enriched on exons, consistent with the targeting of DNA methylation to nucleosomes, and suggesting a role for DNA methylation in exon definition.


Cell | 2013

Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome.

Hume Stroud; Maxim V. C. Greenberg; Suhua Feng; Yana V. Bernatavichute; Steven E. Jacobsen

Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning.


Genome Biology | 2011

5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells

Hume Stroud; Suhua Feng; Shannon R. M. Kinney; Sriharsa Pradhan; Steven E. Jacobsen

Background5-Hydroxymethylcytosine (5hmC) was recently found to be abundantly present in certain cell types, including embryonic stem cells. There is growing evidence that TET proteins, which convert 5-methylcytosine (5mC) to 5hmC, play important biological roles. To further understand the function of 5hmC, an analysis of the genome-wide localization of this mark is required.ResultsHere, we have generated a genome-wide map of 5hmC in human embryonic stem cells by hmeDIP-seq, in which hydroxymethyl-DNA immunoprecipitation is followed by massively parallel sequencing. We found that 5hmC is enriched in enhancers as well as in gene bodies, suggesting a potential role for 5hmC in gene regulation. Consistent with localization of 5hmC at enhancers, 5hmC was significantly enriched in histone modifications associated with enhancers, such as H3K4me1 and H3K27ac. 5hmC was also enriched in other protein-DNA interaction sites, such as OCT4 and NANOG binding sites. Furthermore, we found that 5hmC regions tend to have an excess of G over C on one strand of DNA.ConclusionsOur findings suggest that 5hmC may be targeted to certain genomic regions based both on gene expression and sequence composition.


Nature Structural & Molecular Biology | 2014

Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis

Hume Stroud; Truman Do; Jiamu Du; Xuehua Zhong; Suhua Feng; Lianna M. Johnson; Dinshaw J. Patel; Steven E. Jacobsen

DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS REARRANGED METHYLTRANSFERASE (DRM) proteins; however, its roles remain poorly understood. Here we characterize the roles of non-CG methylation in Arabidopsis thaliana. We show that a poorly characterized methyltransferase, CMT2, is a functional methyltransferase in vitro and in vivo. CMT2 preferentially binds histone H3 Lys9 (H3K9) dimethylation and methylates non-CG cytosines that are regulated by H3K9 methylation. We revealed the contributions and redundancies between each non-CG methyltransferase in DNA methylation patterning and in regulating transcription. We also demonstrate extensive dependencies of small-RNA accumulation and H3K9 methylation patterning on non-CG methylation, suggesting self-reinforcing mechanisms between these epigenetic factors. The results suggest that non-CG methylation patterns are critical in shaping the landscapes of histone modification and small noncoding RNA.


Nature | 2015

Disruption of DNA-methylation-dependent long gene repression in Rett syndrome

Harrison W. Gabel; Benyam Kinde; Hume Stroud; Caitlin S. Gilbert; David A. Harmin; Nathaniel R. Kastan; Martin Hemberg; Daniel H. Ebert; Michael E. Greenberg

Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism. MECP2 encodes a methyl-DNA-binding protein that has been proposed to function as a transcriptional repressor, but despite numerous mouse studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 protein regulates transcription. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain.


Cell | 2012

Dual Binding of Chromomethylase Domains to H3K9me2-Containing Nucleosomes Directs DNA Methylation in Plants

Jiamu Du; Xuehua Zhong; Yana V. Bernatavichute; Hume Stroud; Suhua Feng; Elena Caro; Ajay A. Vashisht; Jolyon Terragni; Hang Gyeong Chin; Andy Tu; Jonathan Hetzel; James A. Wohlschlegel; Sriharsa Pradhan; Dinshaw J. Patel; Steven E. Jacobsen

DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2, and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homolog ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both bromo adjacent homology (BAH) and chromo domains. The structures reveal an aromatic cage within both BAH and chromo domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes and show a complete loss of CMT3 activity in vivo. Our study establishes dual recognition of H3K9me2 marks by BAH and chromo domains and reveals a distinct mechanism of interplay between DNA methylation and histone modification.


Science | 2012

MORC Family ATPases Required for Heterochromatin Condensation and Gene Silencing

Guillaume Moissiard; Shawn J. Cokus; Joshua Cary; Suhua Feng; Allison C. Billi; Hume Stroud; Dylan Husmann; Ye Zhan; Bryan R. Lajoie; Rachel Patton McCord; Christopher J. Hale; Wei Feng; Scott D. Michaels; Alison R. Frand; Matteo Pellegrini; Job Dekker; John Kim; Steven E. Jacobsen

To Silence or Not to Silence Repressed genes commonly have methylated DNA, and/or covalent histone modifications associated with silent chromatin, and/or associated small interfering (si)RNAs. All three features are components of gene-silencing systems (see the Perspective by Jacob and Martienssen). In a screen for components of DNA methylation gene-silencing systems in the flowering plant, Moissiard et al. (p. 1448, published online 3 May) identified the genes AtMoRC1 and AtMORC6, which are homologs of the mouse Microrchidia1 gene. AtMORC1 and AtMORC6 are involved in silencing transposable elements and genes corresponding to DNA-methylated loci, and yet neither gene is required for maintenance of DNA methylation. Instead, AtMoRC1 and AtMORC6 are related to proteins that remodel chromatin superstructure, and they seem to control gene-silencing through the higher-order compaction of methylated and silent chromatin. Qian et al. (p. 1445) identified an Arabidopsis gene, IDM1 (increased DNA methylation 1), that is involved in regulating DNA methylation at loci enriched for repeats and multigene families containing highly homologous genes. IDM1 protects target genes from DNA silencing and recognizes both histone H3 and methylated DNA at target loci and is able to acetylate histone H3. A conserved family of adenosine triphosphatases predicted to catalyze alterations in chromosome superstructure is required for gene silencing. Transposable elements (TEs) and DNA repeats are commonly targeted by DNA and histone methylation to achieve epigenetic gene silencing. We isolated mutations in two Arabidopsis genes, AtMORC1 and AtMORC6, which cause derepression of DNA-methylated genes and TEs but no losses of DNA or histone methylation. AtMORC1 and AtMORC6 are members of the conserved Microrchidia (MORC) adenosine triphosphatase (ATPase) family, which are predicted to catalyze alterations in chromosome superstructure. The atmorc1 and atmorc6 mutants show decondensation of pericentromeric heterochromatin, increased interaction of pericentromeric regions with the rest of the genome, and transcriptional defects that are largely restricted to loci residing in pericentromeric regions. Knockdown of the single MORC homolog in Caenorhabditis elegans also impairs transgene silencing. We propose that the MORC ATPases are conserved regulators of gene silencing in eukaryotes.


Nature Structural & Molecular Biology | 2009

ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing

Yannick Jacob; Suhua Feng; Chantal LeBlanc; Yana V. Bernatavichute; Hume Stroud; Shawn J. Cokus; Lianna M. Johnson; Matteo Pellegrini; Steven E. Jacobsen; Scott D. Michaels

Constitutive heterochromatin in Arabidopsis thaliana is marked by repressive chromatin modifications, including DNA methylation, histone H3 dimethylation at Lys9 (H3K9me2) and monomethylation at Lys27 (H3K27me1). The enzymes catalyzing DNA methylation and H3K9me2 have been identified; alterations in these proteins lead to reactivation of silenced heterochromatic elements. The enzymes responsible for heterochromatic H3K27me1, in contrast, remain unknown. Here we show that the divergent SET-domain proteins ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) and ATXR6 have H3K27 monomethyltransferase activity, and atxr5 atxr6 double mutants have reduced H3K27me1 in vivo and show partial heterochromatin decondensation. Mutations in atxr5 and atxr6 also lead to transcriptional activation of repressed heterochromatic elements. Notably, H3K9me2 and DNA methylation are unaffected in double mutants. These results indicate that ATXR5 and ATXR6 form a new class of H3K27 methyltransferases and that H3K27me1 represents a previously uncharacterized pathway required for transcriptional repression in Arabidopsis.


Journal of Biological Chemistry | 2011

Tissue-specific Distribution and Dynamic Changes of 5-Hydroxymethylcytosine in Mammalian Genomes

Shannon R. M. Kinney; Hang Gyeong Chin; Romualdas Vaisvila; Jurate Bitinaite; Yu Zheng; Pierre-Olivier Estève; Suhua Feng; Hume Stroud; Steven E. Jacobsen; Sriharsa Pradhan

Cytosine residues in the vertebrate genome are enzymatically modified to 5-methylcytosine, which participates in transcriptional repression of genes during development and disease progression. 5-Methylcytosine can be further enzymatically modified to 5-hydroxymethylcytosine by the TET family of methylcytosine dioxygenases. Analysis of 5-methylcytosine and 5-hydroxymethylcytosine is confounded, as these modifications are indistinguishable by traditional sequencing methods even when supplemented by bisulfite conversion. Here we demonstrate a simple enzymatic approach that involves cloning, identification, and quantification of 5-hydroxymethylcytosine in various CCGG loci within murine and human genomes. 5-Hydroxymethylcytosine was prevalent in human and murine brain and heart genomic DNAs at several regions. The cultured cell lines NIH3T3 and HeLa both displayed very low or undetectable amounts of 5-hydroxymethylcytosine at the examined loci. Interestingly, 5-hydroxymethylcytosine levels in mouse embryonic stem cell DNA first increased then slowly decreased upon differentiation to embryoid bodies, whereas 5-methylcytosine levels increased gradually over time. Finally, using a quantitative PCR approach, we established that a portion of VANGL1 and EGFR gene body methylation in human tissue DNA samples is indeed hydroxymethylation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee

Hongmei Li-Byarlay; Yang Li; Hume Stroud; Suhua Feng; Thomas C. Newman; Megan Kaneda; Kirk K. Hou; Kim C. Worley; Christine G. Elsik; Samuel A. Wickline; Steven E. Jacobsen; Jian Ma; Gene E. Robinson

Studies of DNA methylation from fungi, plants, and animals indicate that gene body methylation is ancient and highly conserved in eukaryotic genomes, but its role has not been clearly defined. It has been postulated that regulation of alternative splicing of transcripts was an original function of DNA methylation, but a direct experimental test of the effect of methylation on alternative slicing at the whole genome level has never been performed. To do this, we developed a unique method to administer RNA interference (RNAi) in a high-throughput and noninvasive manner and then used it to knock down the expression of DNA methyl-transferase 3 (dnmt3), which is required for de novo DNA methylation. We chose the honey bee (Apis mellifera) for this test because it has recently emerged as an important model organism for studying the effects of DNA methylation on development and social behavior, and DNA methylation in honey bees is predominantly on gene bodies. Here we show that dnmt3 RNAi decreased global genomic methylation level as expected and in addition caused widespread and diverse changes in alternative splicing in fat tissue. Four different types of splicing events were affected by dnmt3 gene knockdown, and change in two types, exon skipping and intron retention, was directly related to decreased methylation. These results demonstrate that one function of gene body DNA methylation is to regulate alternative splicing.

Collaboration


Dive into the Hume Stroud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suhua Feng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott D. Michaels

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Caro

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillaume Moissiard

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge