Yannick Jacob
Indiana University Bloomington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yannick Jacob.
The Plant Cell | 2005
Sang Yeol Kim; Yuehui He; Yannick Jacob; Yoo-Sun Noh; Scott D. Michaels; Richard M. Amasino
Winter-annual accessions of Arabidopsis thaliana are often characterized by a requirement for exposure to the cold of winter to initiate flowering in the spring. The block to flowering prior to cold exposure is due to high levels of the flowering repressor FLOWERING LOCUS C (FLC). Exposure to cold promotes flowering through a process known as vernalization that epigenetically represses FLC expression. Rapid-cycling accessions typically have low levels of FLC expression and therefore do not require vernalization. A screen for mutants in which a winter-annual Arabidopsis is converted to a rapid-cycling type has identified a putative histone H3 methyl transferase that is required for FLC expression. Lesions in this methyl transferase, EARLY FLOWERING IN SHORT DAYS (EFS), result in reduced levels of histone H3 Lys 4 trimethylation in FLC chromatin. EFS is also required for expression of other genes in the FLC clade, such as MADS AFFECTING FLOWERING2 and FLOWERING LOCUS M. The requirement for EFS to permit expression of several FLC clade genes accounts for the ability of efs lesions to suppress delayed flowering due to the presence of FRIGIDA, autonomous pathway mutations, or growth in noninductive photoperiods. efs mutants exhibit pleiotropic phenotypes, indicating that the role of EFS is not limited to the regulation of flowering time.
Nature Structural & Molecular Biology | 2009
Yannick Jacob; Suhua Feng; Chantal LeBlanc; Yana V. Bernatavichute; Hume Stroud; Shawn J. Cokus; Lianna M. Johnson; Matteo Pellegrini; Steven E. Jacobsen; Scott D. Michaels
Constitutive heterochromatin in Arabidopsis thaliana is marked by repressive chromatin modifications, including DNA methylation, histone H3 dimethylation at Lys9 (H3K9me2) and monomethylation at Lys27 (H3K27me1). The enzymes catalyzing DNA methylation and H3K9me2 have been identified; alterations in these proteins lead to reactivation of silenced heterochromatic elements. The enzymes responsible for heterochromatic H3K27me1, in contrast, remain unknown. Here we show that the divergent SET-domain proteins ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) and ATXR6 have H3K27 monomethyltransferase activity, and atxr5 atxr6 double mutants have reduced H3K27me1 in vivo and show partial heterochromatin decondensation. Mutations in atxr5 and atxr6 also lead to transcriptional activation of repressed heterochromatic elements. Notably, H3K9me2 and DNA methylation are unaffected in double mutants. These results indicate that ATXR5 and ATXR6 form a new class of H3K27 methyltransferases and that H3K27me1 represents a previously uncharacterized pathway required for transcriptional repression in Arabidopsis.
Nature | 2010
Yannick Jacob; Hume Stroud; Chantal LeBlanc; Suhua Feng; Luting Zhuo; Elena Caro; Christiane Hassel; Crisanto Gutierrez; Scott D. Michaels; Steven E. Jacobsen
Multiple pathways prevent DNA replication from occurring more than once per cell cycle. These pathways block re-replication by strictly controlling the activity of pre-replication complexes, which assemble at specific sites in the genome called origins. Here we show that mutations in the homologous histone 3 lysine 27 (H3K27) monomethyltransferases, ARABIDOPSIS TRITHORAX-RELATED PROTEIN5 (ATXR5) and ATXR6, lead to re-replication of specific genomic locations. Most of these locations correspond to transposons and other repetitive and silent elements of the Arabidopsis genome. These sites also correspond to high levels of H3K27 monomethylation, and mutation of the catalytic SET domain is sufficient to cause the re-replication defect. Mutation of ATXR5 and ATXR6 also causes upregulation of transposon expression and has pleiotropic effects on plant development. These results uncover a novel pathway that prevents over-replication of heterochromatin in Arabidopsis.
Plant Physiology | 2007
Yannick Jacob; Chareerat Mongkolsiriwatana; Kira M. Veley; Sang Yeol Kim; Scott D. Michaels
Nuclear pore complexes (NPCs) mediate the transport of RNA and other cargo between the nucleus and the cytoplasm. In vertebrates, the NPC protein TRANSLOCATED PROMOTER REGION (TPR) is associated with the inner filaments of the nuclear basket and is thought to serve as a scaffold for the assembly of transport machinery. In a screen for mutants that suppress the expression of the floral inhibitor FLOWERING LOCUS C, we identified lesions in the Arabidopsis (Arabidopsis thaliana) homolog of TPR (AtTPR). attpr mutants exhibit early-flowering and other pleiotropic phenotypes. A possible explanation for these developmental defects is that attpr mutants exhibit an approximately 8-fold increase in nuclear polyA RNA. Thus AtTPR is required for the efficient export of RNA from the nucleus. Microarray analysis shows that, in wild type, transcript abundance in the nuclear and total RNA pools are highly correlated; whereas, in attpr mutants, a significantly larger fraction of transcripts is enriched in either the nuclear or total pool. Thus AtTPR is required for homeostasis between nuclear and cytoplasmic RNA. We also show that the effects of AtTPR on small RNA abundance and auxin signaling are similar to that of two other NPC-associated proteins, HASTY (HST) and SUPPRESSOR OF AUXIN RESISTANCE3 (SAR3). This suggests that AtTPR, HST, and SAR3 may play related roles in the function of the nuclear pore.
Science | 2014
Yannick Jacob; Elisa Bergamin; Mark T.A. Donoghue; Vanessa Mongeon; Chantal LeBlanc; Philipp Voigt; Charles J. Underwood; Joseph S. Brunzelle; Scott D. Michaels; Danny Reinberg; Jean-François Couture; Robert A. Martienssen
Making a Histone Mark The covalent marks on histones (the principal components of chromatin) play a critical role in the regulation of gene expression. Somehow these marks are preserved when a cell in a tissue divides so that the daughter cells maintain the gene expression program and tissue identity of the parent cell. Jacob et al. (p. 1249) show that the Arabidopsis histone methylase ATXR5 is specific for the replication-dependent histone variant H3.1 and maintains the repressive histone H3 lysine-27 methyl mark on the H3.1 variant during genome replication, thus, preserving cell-type–specific regions of heterochromatin and gene repression through cell division and beyond. The specificity of a histone methyltransferase for a histone variant maintains heterochromatin through cell division. Histone variants have been proposed to act as determinants for posttranslational modifications with widespread regulatory functions. We identify a histone-modifying enzyme that selectively methylates the replication-dependent histone H3 variant H3.1. The crystal structure of the SET domain of the histone H3 lysine-27 (H3K27) methyltransferase ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) in complex with a H3.1 peptide shows that ATXR5 contains a bipartite catalytic domain that specifically “reads” alanine-31 of H3.1. Variation at position 31 between H3.1 and replication-independent H3.3 is conserved in plants and animals, and threonine-31 in H3.3 is responsible for inhibiting the activity of ATXR5 and its paralog, ATXR6. Our results suggest a simple model for the mitotic inheritance of the heterochromatic mark H3K27me1 and the protection of H3.3-enriched genes against heterochromatization during DNA replication.
PLOS Genetics | 2011
Xiaofeng Gu; Danhua Jiang; Wannian Yang; Yannick Jacob; Scott D. Michaels; Yuehui He
RNA molecules such as small-interfering RNAs (siRNAs) and antisense RNAs (asRNAs) trigger chromatin silencing of target loci. In the model plant Arabidopsis, RNA–triggered chromatin silencing involves repressive histone modifications such as histone deacetylation, histone H3 lysine-9 methylation, and H3 lysine-27 monomethylation. Here, we report that two Arabidopsis homologs of the human histone-binding proteins Retinoblastoma-Associated Protein 46/48 (RbAp46/48), known as MSI4 (or FVE) and MSI5, function in partial redundancy in chromatin silencing of various loci targeted by siRNAs or asRNAs. We show that MSI5 acts in partial redundancy with FVE to silence FLOWERING LOCUS C (FLC), which is a crucial floral repressor subject to asRNA–mediated silencing, FLC homologs, and other loci including transposable and repetitive elements which are targets of siRNA–directed DNA Methylation (RdDM). Both FVE and MSI5 associate with HISTONE DEACETYLASE 6 (HDA6) to form complexes and directly interact with the target loci, leading to histone deacetylation and transcriptional silencing. In addition, these two genes function in de novo CHH (H = A, T, or C) methylation and maintenance of symmetric cytosine methylation (mainly CHG methylation) at endogenous RdDM target loci, and they are also required for establishment of cytosine methylation in the previously unmethylated sequences directed by the RdDM pathway. This reveals an important functional divergence of the plant RbAp46/48 relatives from animal counterparts.
PLOS Genetics | 2012
Hume Stroud; Christopher J. Hale; Suhua Feng; Elena Caro; Yannick Jacob; Scott D. Michaels; Steven E. Jacobsen
The relationship between epigenetic marks on chromatin and the regulation of DNA replication is poorly understood. Mutations of the H3K27 methyltransferase genes, ARABIDOPSIS TRITHORAX-RELATED PROTEIN5 (ATXR5) and ATXR6, result in re-replication (repeated origin firing within the same cell cycle). Here we show that mutations that reduce DNA methylation act to suppress the re-replication phenotype of atxr5 atxr6 mutants. This suggests that DNA methylation, a mark enriched at the same heterochromatic regions that re-replicate in atxr5/6 mutants, is required for aberrant re-replication. In contrast, RNA sequencing analyses suggest that ATXR5/6 and DNA methylation cooperatively transcriptionally silence transposable elements (TEs). Hence our results suggest a complex relationship between ATXR5/6 and DNA methylation in the regulation of DNA replication and transcription of TEs.
Current Opinion in Plant Biology | 2011
Frédéric Van Ex; Yannick Jacob; Robert A. Martienssen
Germline development and early embryogenesis in eukaryotes are characterized by large-scale genome reprogramming events. In companion cells of the Arabidopsis male gametophyte, epigenome reorganization leads to loss of heterochromatin and production of a distinct small RNA (sRNA) population. A specific class of sRNA derived from transposons appears to be mobile and can accumulate in germ cells. In the germline of maize, rice, and Arabidopsis, specific ARGONAUTE-sRNA silencing complexes appear to play key roles in reproductive development, including meiosis and regulation of germ cell fate. These results reveal new roles for sRNAs during plant reproduction and suggest that mobility of sRNAs could be critical for some of these functions.
Plant Physiology | 2011
Wei Feng; Yannick Jacob; Kira M. Veley; Lei Ding; Xuhong Yu; Goh Choe; Scott D. Michaels
The autonomous floral promotion pathway plays a key role in the regulation of flowering in rapid-cycling Arabidopsis (Arabidopsis thaliana) by providing constitutive repression of the floral inhibitor FLOWERING LOCUS C (FLC). As a result, autonomous pathway mutants contain elevated levels of FLC and are late flowering. Winter annual Arabidopsis, in contrast, contain functional alleles of FRIGIDA (FRI), which acts epistatically to the autonomous pathway to up-regulate FLC and delay flowering. To further explore the relationship between FRI and the autonomous pathway, we placed autonomous pathway mutants in a FRI-containing background. Unexpectedly, we found that a hypomorphic allele of the autonomous pathway gene fy (fy null alleles are embryo lethal) displayed background-specific effects on FLC expression and flowering time; in a rapid-cycling background fy mutants contained elevated levels of FLC and were late flowering, whereas in a winter annual background fy decreased FLC levels and partially suppressed the late-flowering phenotype conferred by FRI. Because FY has been shown to have homology to polyadenylation factors, we examined polyadenylation site selection in FLC transcripts. In wild type, two polyadenylation sites were detected and used at similar levels. In fy mutant backgrounds, however, the ratio of products was shifted to favor the distally polyadenylated form. FY has previously been shown to physically interact with another member of the autonomous pathway, FCA. Interestingly, we found that fy can partially suppress FLC expression in an fca null background and promote proximal polyadenylation site selection usage in the absence of FCA. Taken together, these results indicate novel and FCA-independent roles for FY in the regulation of FLC.
Epigenetics | 2009
Yannick Jacob; Scott D. Michaels
Post-translational modifications of histones play key roles in the regulation of gene expression and chromatin structure in eukaryotes. Methylation of histone 3 on lysine 27 (H3K27) is one of the most common and well-studied histone post-translational modifications. The vast majority of research on this histone residue, however, has focused on the trimethylated form (H3K27me3). Despite occurring at higher levels than H3K27me3 in animals and plants, the monomethylated form of H3K27 (H3K27me1) remains relatively poorly characterized. The absence of information concerning H3K27me1 is due in large part to the fact that the enzymes catalyzing this epigenetic mark were only recently identified. In this article, we highlight new findings concerning H3K27me1, including the identification of two plant-specific H3K27 monomethyltransferases that are required for gene silencing and heterochromatin condensation. We also discuss the emerging similarities and differences in H3K27 methylation in plant and animal systems.