Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott T. Bates is active.

Publication


Featured researches published by Scott T. Bates.


Molecular Ecology | 2013

Towards a unified paradigm for sequence‐based identification of fungi

Urmas Kõljalg; R. Henrik Nilsson; Kessy Abarenkov; Leho Tedersoo; Andy F. S. Taylor; Mohammad Bahram; Scott T. Bates; Thomas D. Bruns; Johan Bengtsson-Palme; Tony M. Callaghan; Brian Douglas; Tiia Drenkhan; Ursula Eberhardt; Margarita Dueñas; Tine Grebenc; Gareth W. Griffith; Martin Hartmann; Paul M. Kirk; Petr Kohout; Ellen Larsson; Björn D. Lindahl; Robert Lücking; María P. Martín; P. Brandon Matheny; Nhu H. Nguyen; Tuula Niskanen; Jane Oja; Kabir G. Peay; Ursula Peintner; Marko Peterson

The nuclear ribosomal internal transcribed spacer (ITS) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable public reference data set and (ii) the lack of means to refer to fungal species, for which no Latin name is available in a standardized stable way. Here, we report on progress in these regards through further development of the UNITE database (http://unite.ut.ee) for molecular identification of fungi. All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type (e.g. Hymenoscyphus pseudoalbidus|GU586904|SH133781.05FU), and their taxonomic and ecological annotations were corrected as far as possible through a distributed, third‐party annotation effort. We introduce the term ‘species hypothesis’ (SH) for the taxa discovered in clustering on different similarity thresholds (97–99%). An automatically or manually designated sequence is chosen to represent each such SH. These reference sequences are released (http://unite.ut.ee/repository.php) for use by the scientific community in, for example, local sequence similarity searches and in the QIIME pipeline. The system and the data will be updated automatically as the number of public fungal ITS sequences grows. We invite everybody in the position to improve the annotation or metadata associated with their particular fungal lineages of expertise to do so through the new Web‐based sequence management system in UNITE.


The ISME Journal | 2011

Examining the global distribution of dominant archaeal populations in soil

Scott T. Bates; Donna Berg-Lyons; J. Gregory Caporaso; William A. Walters; Rob Knight; Noah Fierer

Archaea, primarily Crenarchaeota, are common in soil; however, the structure of soil archaeal communities and the factors regulating their diversity and abundance remain poorly understood. Here, we used barcoded pyrosequencing to comprehensively survey archaeal and bacterial communities in 146 soils, representing a multitude of soil and ecosystem types from across the globe. Relative archaeal abundance, the percentage of all 16S rRNA gene sequences recovered that were archaeal, averaged 2% across all soils and ranged from 0% to >10% in individual soils. Soil C:N ratio was the only factor consistently correlated with archaeal relative abundances, being higher in soils with lower C:N ratios. Soil archaea communities were dominated by just two phylotypes from a constrained clade within the Crenarchaeota, which together accounted for >70% of all archaeal sequences obtained in the survey. As one of these phylotypes was closely related to a previously identified putative ammonia oxidizer, we sampled from two long-term nitrogen (N) addition experiments to determine if this taxon responds to experimental manipulations of N availability. Contrary to expectations, the abundance of this dominant taxon, as well as archaea overall, tended to decline with increasing N. This trend was coupled with a concurrent increase in known N-oxidizing bacteria, suggesting competitive interactions between these groups.


The ISME Journal | 2012

Using network analysis to explore co-occurrence patterns in soil microbial communities

Scott T. Bates; Emilio O. Casamayor; Noah Fierer

Exploring large environmental datasets generated by high-throughput DNA sequencing technologies requires new analytical approaches to move beyond the basic inventory descriptions of the composition and diversity of natural microbial communities. In order to investigate potential interactions between microbial taxa, network analysis of significant taxon co-occurrence patterns may help to decipher the structure of complex microbial communities across spatial or temporal gradients. Here, we calculated associations between microbial taxa and applied network analysis approaches to a 16S rRNA gene barcoded pyrosequencing dataset containing >160 000 bacterial and archaeal sequences from 151 soil samples from a broad range of ecosystem types. We described the topology of the resulting network and defined operational taxonomic unit categories based on abundance and occupancy (that is, habitat generalists and habitat specialists). Co-occurrence patterns were readily revealed, including general non-random association, common life history strategies at broad taxonomic levels and unexpected relationships between community members. Overall, we demonstrated the potential of exploring inter-taxa correlations to gain a more integrated understanding of microbial community structure and the ecological rules guiding community assembly.


Applied and Environmental Microbiology | 2011

Bacterial Communities Associated with the Lichen Symbiosis

Scott T. Bates; Garrett W. G. Cropsey; J. Gregory Caporaso; Rob Knight; Noah Fierer

ABSTRACT Lichens are commonly described as a mutualistic symbiosis between fungi and “algae” (Chlorophyta or Cyanobacteria); however, they also have internal bacterial communities. Recent research suggests that lichen-associated microbes are an integral component of lichen thalli and that the classical view of this symbiotic relationship should be expanded to include bacteria. However, we still have a limited understanding of the phylogenetic structure of these communities and their variability across lichen species. To address these knowledge gaps, we used bar-coded pyrosequencing to survey the bacterial communities associated with lichens. Bacterial sequences obtained from four lichen species at multiple locations on rock outcrops suggested that each lichen species harbored a distinct community and that all communities were dominated by Alphaproteobacteria. Across all samples, we recovered numerous bacterial phylotypes that were closely related to sequences isolated from lichens in prior investigations, including those from a lichen-associated Rhizobiales lineage (LAR1; putative N2 fixers). LAR1-related phylotypes were relatively abundant and were found in all four lichen species, and many sequences closely related to other known N2 fixers (e.g., Azospirillum, Bradyrhizobium, and Frankia) were recovered. Our findings confirm the presence of highly structured bacterial communities within lichens and provide additional evidence that these bacteria may serve distinct functional roles within lichen symbioses.


The ISME Journal | 2013

Global biogeography of highly diverse protistan communities in soil

Scott T. Bates; Jose C. Clemente; Gilberto E. Flores; William A. Walters; Laura Wegener Parfrey; Rob Knight; Noah Fierer

Protists are ubiquitous members of soil microbial communities, but the structure of these communities, and the factors that influence their diversity, are poorly understood. We used barcoded pyrosequencing to survey comprehensively the diversity of soil protists from 40 sites across a broad geographic range that represent a variety of biome types, from tropical forests to deserts. In addition to taxa known to be dominant in soil, including Cercozoa and Ciliophora, we found high relative abundances of groups such as Apicomplexa and Dinophyceae that have not previously been recognized as being important components of soil microbial communities. Soil protistan communities were highly diverse, approaching the extreme diversity of their bacterial counterparts across the same sites. Like bacterial taxa, protistan taxa were not globally distributed, and the composition of these communities diverged considerably across large geographic distances. However, soil protistan and bacterial communities exhibit very different global-scale biogeographical patterns, with protistan communities strongly structured by climatic conditions that regulate annual soil moisture availability.


Proceedings of the Royal Society B: Biological Sciences | 2014

Biogeographic patterns in below-ground diversity in New York City's Central Park are similar to those observed globally

Kelly S. Ramirez; Jonathan W. Leff; Scott T. Bates; Jason Richard Betley; Thomas W. Crowther; Eugene F. Kelly; Emily E. Oldfield; E. Ashley Shaw; Christopher Steenbock; Mark A. Bradford; Diana H. Wall; Noah Fierer

Soil biota play key roles in the functioning of terrestrial ecosystems, however, compared to our knowledge of above-ground plant and animal diversity, the biodiversity found in soils remains largely uncharacterized. Here, we present an assessment of soil biodiversity and biogeographic patterns across Central Park in New York City that spanned all three domains of life, demonstrating that even an urban, managed system harbours large amounts of undescribed soil biodiversity. Despite high variability across the Park, below-ground diversity patterns were predictable based on soil characteristics, with prokaryotic and eukaryotic communities exhibiting overlapping biogeographic patterns. Further, Central Park soils harboured nearly as many distinct soil microbial phylotypes and types of soil communities as we found in biomes across the globe (including arctic, tropical and desert soils). This integrated cross-domain investigation highlights that the amount and patterning of novel and uncharacterized diversity at a single urban location matches that observed across natural ecosystems spanning multiple biomes and continents.


Environmental Microbiology | 2013

Diversity, distribution and sources of bacteria in residential kitchens

Gilberto E. Flores; Scott T. Bates; J. Gregory Caporaso; Christian L. Lauber; Jonathan W. Leff; Rob Knight; Noah Fierer

Bacteria readily colonize kitchen surfaces, and the exchange of microbes between humans and the kitchen environment can impact human health. However, we have a limited understanding of the overall diversity of these communities, how they differ across surfaces and sources of bacteria to kitchen surfaces. Here we used high-throughput sequencing of the 16S rRNA gene to explore biogeographical patterns of bacteria across > 80 surfaces within the kitchens of each of four households. In total, 34 bacterial and two archaeal phyla were identified, with most sequences belonging to the Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. Genera known to contain common food-borne pathogens were low in abundance but broadly distributed throughout the kitchens, with different taxa exhibiting distinct distribution patterns. The most diverse communities were associated with infrequently cleaned surfaces such as fans above stoves, refrigerator/freezer door seals and floors. In contrast, the least diverse communities were observed in and around sinks, which were dominated by biofilm-forming Gram-negative lineages. Community composition was influenced by conditions on individual surfaces, usage patterns and dispersal from source environments. Human skin was the primary source of bacteria across all kitchen surfaces, with contributions from food and faucet water dominating in a few specific locations. This study demonstrates that diverse bacterial communities are widely distributed in residential kitchens and that the composition of these communities is often predictable. These results also illustrate the ease with which human- and food-associated bacteria can be transferred in residential settings to kitchen surfaces.


PLOS ONE | 2013

Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times

Deborah A. Neher; Thomas R. Weicht; Scott T. Bates; Jonathan W. Leff; Noah Fierer

Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed to generate compost with the desired properties.


Lichenologist | 2012

A preliminary survey of lichen associated eukaryotes using pyrosequencing

Scott T. Bates; Donna Berg-Lyons; Christian L. Lauber; William A. Walters; Rob Knight; Noah Fierer

Although various eukaryotic organisms, such as arthropods, endolichenic/lichenicolous fungi, and nematodes, have been isolated from lichens, the diversity and structure of eukaryotic communities associated with lichen thalli has not been well studied. In addressing this knowledge gap, we used bar-coded pyrosequencing of 18S rRNA genes to survey eukaryotes associated with thalli of three different lichen species. In addition to revealing an expected high abundance of lichen biont- related 18S genes, sequences recovered in our survey showed non-biont fungi from the Ascomycota also have a substantial presence in these thalli. Our samples additionally harboured fungi representing phyla (Blastocladiomycota, Chytridiomycota) that have not been isolated previously from lichens; however, their very low abundance indicates an incidental presence. The recovery of Alveolata, Metazoa, and Rhizaria sequences, along with recent work revealing the considerable bacterial diversity in these same samples, suggests lichens function as minute ecosystems in addition to being symbiotic organisms.


Mycologia | 2012

Patterns of diversity for fungal assemblages of biological soil crusts from the southwestern United States

Scott T. Bates; Thomas H. Nash; Ferran Garcia-Pichel

Molecular methodologies were used to investigate fungal assemblages of biological soil crusts (BSCs) from arid lands in the southwestern United States. Fungal diversity of BSCs was assessed in a broad survey that included the Chihuahuan and Sonoran deserts as well as the Colorado Plateau. At selected sites samples were collected along kilometer-scale transects, and fungal community diversity and composition were assessed based on community rRNA gene fingerprinting using PCR-denaturing gradient gel electrophoresis (DGGE). Individual phylotypes were characterized through band sequencing. The results indicate that a considerable diversity of fungi is present within crusted soils, with higher diversity being recovered from more successionally mature BSCs. The overwhelming majority of crust fungi belong to the Ascomycota, with the Pleosporales being widespread and frequently dominant. Beta diversity patterns of phylotypes putatively representing dominant members of BSC fungal communities suggest that these assemblages are specific to their respective geographic regions of origin.

Collaboration


Dive into the Scott T. Bates's collaboration.

Top Co-Authors

Avatar

Noah Fierer

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Rob Knight

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Anderson

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Shannon L. Johnson

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian L. Lauber

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Jonathan W. Leff

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William A. Walters

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge