Sean T. Brennan
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sean T. Brennan.
Geochimica et Cosmochimica Acta | 2002
Sean T. Brennan; Tim K. Lowenstein
One-hundred fluid inclusions in Silurian marine halite were analyzed in order to determine the major-ion composition of Silurian seawater. The samples analyzed were from three formations in the Late Silurian Michigan Basin, the A-1, A-2, and B Evaporites of the Salina Group, and one formation in the Early Silurian Canning Basin (Australia), the Mallowa Salt of the Carribuddy Group. The results indicate that the major-ion composition of Silurian seawater was not the same as present-day seawater. The Silurian ocean had lower concentrations of Mg2+, Na+, and SO42−, and much higher concentrations of Ca2+ relative to the ocean’s present-day composition. Furthermore, Silurian seawater had Ca2+ in excess of SO42−. Evaporation of Silurian seawater of the composition determined in this study produces KCl-type potash minerals that lack the MgSO4-type late stage salts formed during the evaporation of present-day seawater. The relatively low Na+ concentrations in Silurian seawater support the hypothesis that oscillations in the major-ion composition of the oceans are primarily controlled by changes in the flux of mid-ocean ridge brine and riverine inputs and not global or basin-scale, seawater-driven dolomitization. The Mg2+/Ca2+ ratio of Silurian seawater was ∼1.4, and the K+/Ca2+ ratio was ∼0.3, both of which differ from the present-day counterparts of 5 and 1, respectively. Seawaters with Mg2+/Ca2+ 2 (e.g., modern seawater) facilitate the precipitation of aragonite and high-magnesian calcite. Therefore, the early Paleozoic calcite seas were likely due to the low Mg2+/Ca2+ ratio of seawater, not the pCO2 of the Silurian atmosphere.
Geochimica et Cosmochimica Acta | 2001
Michael N. Timofeeff; Tim K. Lowenstein; Sean T. Brennan; Robert V. Demicco; Heide Zimmermann; Juske Horita; L.E von Borstel
Fluid inclusions from marine halites have long been studied to determine the chemical composition of ancient seawater. Chemical analyses of the major ions in fluid inclusions in halites from the solar saltwork of Great Inagua Island, Bahamas, and from the supratidal sabkha, Baja California, Mexico, show that modern marine halites faithfully record the chemical signature of seawater. The major ions in Great Inagua and Baja California fluid inclusions display distinctive linear trends when plotted against one another (ie., Na+, K+, and SO42− vs. Mg2+ and Cl−), which track the evaporation path of seawater as it evolved during the crystallization of halite. These evaporation paths defined for the major ions by fluid inclusions in halite overlap findings of computer simulations of the evaporation of modern seawater by the Harvie, Moller, and Weare (HMW) computer program. The close match between the HMW seawater evaporation paths and the Great Inagua fluid inclusion data is not surprising considering the carefully controlled inflow, evaporation, and discharge of seawater at the Great Inagua saltwork. The major ion chemistry of fluid inclusions from the Baja California halites matches the HMW seawater evaporation paths in most respects, but one Baja fluid inclusion has lower concentrations of Mg2+ than evaporated seawater. Nonmarine inflows and syndepositional recycling of preexisting salts in the Baja California supratidal setting were not large enough to override the chemical signature of evaporating seawater as the primary control on the Baja fluid inclusion compositions. Fluid inclusions in halites from the nonmarine Qaidam Basin, Qinghai Province, western China, have a distinctly different major ion chemical signature than does “global” seawater. The fluid inclusion chemistries from the Qaidam Basin halites do not lie on the evaporation pathways defined by modern seawater and can clearly be differentiated from fluid inclusions containing evaporated seawater. If fluid inclusions in halites from modern natural settings contain unmistakable samples of evaporated seawater, then evaluation of the chemistry of ancient seawater by chemical analysis of fluid inclusions in ancient marine halites by means of the same approach should be valid.
American Journal of Science | 2013
Sean T. Brennan; Tim K. Lowenstein; Dioni I. Cendón
Fluid inclusions from ten Cenozoic (Eocene-Miocene) marine halites are used to quantify the major-ion composition (Mg2+, Ca2+, K+, Na+, SO42−, and Cl−) of seawater over the past 36 My. Criteria used to determine a seawater origin of the halites include: (1) stratigraphic, sedimentologic, and paleontologic observations; (2) Br− in halite; (3) δ34S of sulfate minerals; (4) 87Sr/86Sr of carbonates and sulfates; and (5) fluid inclusion brine compositions and evaporation paths, which must overlap from geographically separated basins of the same age to confirm a “global” seawater chemical signal. Changes in the major-ion chemistry of Cenozoic seawater record the end of a systematic, long term (>150 My) shift from the Ca2+-rich, Mg2+- and SO42−-poor seawater of the Mesozoic (“CaCl2 seas”) to the “MgSO4 seas” (with higher Mg2+ and SO42−>Ca2+) of the Cenozoic. The major ion composition of Cenozoic seawater is calculated for the Eocene-Oligocene (36-34 Ma), Serravallian-Tortonian (13.5-11.8 Ma) and the Messinian (6-5 Ma), assuming chlorinity (565 mmolal), salinity, and the K+ concentration (11 mmolal) are constant and the same as in modern seawater. Fluid inclusions from Cenozoic marine halites show that the concentrations of Mg2+and SO42− have increased in seawater over the past 36 My and the concentration of Ca2+ has decreased. Mg2+ concentrations increased from 36 mmolal in Eocene-Oligocene seawater (36-34 Ma) to 55 mmolal in modern seawater. The Mg2+/Ca2+ ratio of seawater has risen from ∼2.3 at the end of the Eocene, to 3.4 and 4.0, respectively, at 13.5 to 11.8 Ma and 6 to 5 Ma, and to 5 in modern seawater. Eocene-Oligocene seawater (36-34 Ma) has estimated ranges of SO42− = 14–23 mmolal and Ca2+ = 11–20 mmolal. If the (Ca2+)(SO42−) product is assumed to be the same as in modern seawater (∼300 mmolal2), Eocene-Oligocene seawater had Ca2+ ∼16 mmolal and SO42− ∼19 mmolal. The same estimates of Ca2+ and SO42− for Serravallian-Tortonian seawater (13.5-11.8 Ma) are SO42− = 19–27 mmolal and Ca2+ = 8–16 mmolal and SO42− ∼24 mmolal and Ca2+ ∼ 13 mmolal if the (Ca2+)(SO42−) product is equal to that in modern seawater. Messinian seawater has an estimated range of SO42− ∼21–29 mmolal and Ca2+ ∼7–15 mmolal with SO42− ∼26 mmolal and Ca2+ ∼12 mmolal assuming the (Ca2+)(SO42−) product is equal to that in modern seawater. Regardless of the estimation procedure, SO42− shows progressively increasing concentrations from 36 Ma to the present values, which are the highest of the Cenozoic.
Greenhouse Gas Control Technologies 7#R##N#Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies 5– September 2004, Vancouver, Canada | 2005
Sean T. Brennan; Hughes V. Adrian; Freidmann S. Julio; C Burruss Robert
Publisher Summary This chapter discusses that natural gas accumulations with high CO2 concentrations may be useful natural analogs for the study of long-term CO2 storage in geologic strata if viewed in the context of “CO2 systems.” The CO2 system concept can provide important information about the behavior of CO2 in the subsurface over geologic time scales, specifically determining the length of time that CO2 has been trapped in the subsurface. This storage duration parameter is important for providing a degree of security about whether or not CO2 that is pumped into geologic strata will stay in traps for thousands of years at a minimum. Furthermore, the CO2 system approach can identify the source and migration pathways. The migration pathways and traps can be studied to see if there are any chemical or physical signs of the CO2-rich fluids, e.g. dissolution due to acidic CO2-rich fluids or precipitation of exotic carbonate minerals.
Open-File Report | 2016
Matthew D. Merrill; Ronald M. Drake; Marc L. Buursink; William H. Craddock; Joseph A. East; Ernie R. Slucher; Peter D. Warwick; Sean T. Brennan; Madalyn S. Blondes; Philip A. Freeman; Steven M. Cahan; Christina A. DeVera; Celeste D. Lohr
The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resources in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report is the geologic framework document for the Uinta and Piceance, San Juan, Paradox, Raton, Eastern Great, and Black Mesa Basins, and subbasins therein of Arizona, Colorado, Idaho, Nevada, New Mexico, and Utah. In addition to a summary of the geology and petroleum resources of studied basins, the individual storage assessment units (SAUs) within the basins are described and explanations for their selection are presented. Although appendixes in the national assessment publications include the input values used to calculate the available storage resource, this framework document provides only the context and source of the input values selected by the assessment geologists. Spatial-data files of the boundaries for the SAUs, and the well-penetration density of known well bores that penetrate the SAU seal, are available for download with the release of this report.
Open-File Report | 2014
Tina L. Roberts-Ashby; Sean T. Brennan; Marc L. Buursink; Jacob A. Covault; William H. Craddock; Ronald M. Drake; Matthew D. Merrill; Ernie R. Slucher; Peter D. Warwick; Madalyn S. Blondes; Mayur A. Gosai; Philip A. Freeman; Steven M. Cahan; Christina A. DeVera; Celeste D. Lohr
This report presents 27 storage assessment units (SAUs) within the United States (U.S.) Gulf Coast. The U.S. Gulf Coast contains a regionally extensive, thick succession of clastics, carbonates, salts, and other evaporites that were deposited in a highly cyclic depositional environment that was subjected to a fluctuating siliciclastic sediment supply and transgressive and regressive sea levels. At least nine major depositional packages contain porous strata that are potentially suitable for geologic carbon dioxide (CO2) sequestration within the region. For each SAU identified within these packages, the areal distribution of porous rock that is suitable for geologic CO2 sequestration is discussed, along with a description of the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net-porous thickness, porosity, permeability, and groundwater salinity. Additionally, a characterization of the overlying regional seal for each SAU is presented. On a case-by-case basis, strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are also presented. Geologic information presented in this report has been employed to calculate potential storage capacities for CO2 sequestration in the SAUs that are assessed herein, although complete assessment results are not contained in this report.
Open-File Report | 2014
Ronald M. Drake; Sean T. Brennan; Jacob A. Covault; Madalyn S. Blondes; Philip A. Freeman; Steven M. Cahan; Christina A. DeVera; Celeste D. Lohr
This is a report about the geologic characteristics of five storage assessment units (SAUs) within the Denver Basin of Colorado, Wyoming, and Nebraska. These SAUs are Cretaceous in age and include (1) the Plainview and Lytle Formations, (2) the Muddy Sandstone, (3) the Greenhorn Limestone, (4) the Niobrara Formation and Codell Sandstone, and (5) the Terry and Hygiene Sandstone Members. The described characteristics, as specified in the methodology, affect the potential carbon dioxide storage resource in the SAUs. The specific geologic and petrophysical properties of interest include depth to the top of the storage formation, average thickness, net-porous thickness, porosity, permeability, groundwater quality, and the area of structural reservoir traps. Descriptions of the SAU boundaries and the overlying sealing units are also included. Assessment results are not contained in this report; however, the geologic information included here will be used to calculate a statistical Monte Carlo-based distribution of potential storage volume in the SAUs.
Open-File Report | 2014
Marc L. Buursink; Ernie R. Slucher; Sean T. Brennan; Colin A. Doolan; Ronald M. Drake; Matthew D. Merrill; Peter D. Warwick; Madalyn S. Blondes; P.A. Freeman; Steven M. Cahan; Christina A. DeVera; Celeste D. Lohr
The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows up on previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of 14 storage assessment units (SAUs) in Ordovician to Upper Cretaceous sedimentary rocks within the Greater Green River Basin (GGRB) of Wyoming, Colorado, and Utah, and eight SAUs in Ordovician to Upper Cretaceous sedimentary rocks within the Wyoming-Idaho-Utah Thrust Belt (WIUTB). The GGRB and WIUTB are contiguous with nearly identical geologic units; however, the GGRB is larger in size, whereas the WIUTB is more structurally complex. This report focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in the SAUs. Specific descriptions of the SAU boundaries, as well as their sealing and reservoir units, are included. Properties for each SAU, such as depth to top, gross
Science | 2001
Tim K. Lowenstein; Michael N. Timofeeff; Sean T. Brennan; Lawrence A. Hardie; Robert V. Demicco
Geology | 2004
Sean T. Brennan; Tim K. Lowenstein; Juske Horita