Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Carron is active.

Publication


Featured researches published by Sebastian Carron.


Science | 2014

Shapes and vorticities of superfluid helium nanodroplets

Luis F. Gomez; Ken R. Ferguson; James P. Cryan; Camila Bacellar; Rico Mayro P. Tanyag; Curtis Jones; Sebastian Schorb; Denis Anielski; A. Belkacem; Charles Bernando; Rebecca Boll; John D. Bozek; Sebastian Carron; Gang Chen; Tjark Delmas; Lars Englert; Sascha W. Epp; Benjamin Erk; Lutz Foucar; Robert Hartmann; Alexander Hexemer; Martin Huth; Justin Kwok; Stephen R. Leone; Jonathan H. S. Ma; Filipe R. N. C. Maia; Erik Malmerberg; Stefano Marchesini; Daniel M. Neumark; Billy K. Poon

X-raying superfluid helium droplets When physicists rotate the superfluid 4He, it develops a regular array of tiny whirlpools, called vortices. The same phenomenon should occur in helium droplets half a micrometer in size, but studying individual droplets is tricky. Gomez et al. used x-ray diffraction to deduce the shape of individual rotating droplets and image the resulting vortex patterns, which confirmed the superfluidity of the droplets. They found that superfluid droplets can host a surprising number of vortices and can rotate faster than normal droplets without disintegrating. Science, this issue p. 906 Vortex lattices inside individual helium droplets are imaged using x-ray diffraction. Helium nanodroplets are considered ideal model systems to explore quantum hydrodynamics in self-contained, isolated superfluids. However, exploring the dynamic properties of individual droplets is experimentally challenging. In this work, we used single-shot femtosecond x-ray coherent diffractive imaging to investigate the rotation of single, isolated superfluid helium-4 droplets containing ~108 to 1011 atoms. The formation of quantum vortex lattices inside the droplets is confirmed by observing characteristic Bragg patterns from xenon clusters trapped in the vortex cores. The vortex densities are up to five orders of magnitude larger than those observed in bulk liquid helium. The droplets exhibit large centrifugal deformations but retain axially symmetric shapes at angular velocities well beyond the stability range of viscous classical droplets.


Science | 2014

Imaging charge transfer in iodomethane upon x-ray photoabsorption

Benjamin Erk; Rebecca Boll; Sebastian Trippel; Denis Anielski; Lutz Foucar; Benedikt Rudek; Sascha W. Epp; Ryan Coffee; Sebastian Carron; Sebastian Schorb; Ken R. Ferguson; Michele Swiggers; John D. Bozek; Marc Simon; T. Marchenko; Jochen Küpper; Ilme Schlichting; Joachim Ullrich; Christoph Bostedt; Daniel Rolles; Artem Rudenko

Tightly tracking charge migration Electron transfer dynamics underlie many chemical and biochemical reactions. Erk et al. examined the charge migration between individual carbon and iodine atoms during dissociation of iodomethane (ICH3) molecules (see the Perspective by Pratt). After initiating scission of the C-I bond with a relatively low-energy laser pulse, they introduced a higher-energy x-ray pulse to instigate ionization and charge migration. Delaying the arrival time of the x-ray pulse effectively varied the separation distance being probed as the fragments steadily drifted apart. The experimental approach should also prove useful for future studies of charge transfer dynamics in different molecular or solid-state systems. Science, this issue p. 288; see also p. 267 A free-electron laser enables precise tracking of electron movement between segments of a dissociating molecule. [Also see Perspective by Pratt] Studies of charge transfer are often hampered by difficulties in determining the charge localization at a given time. Here, we used ultrashort x-ray free-electron laser pulses to image charge rearrangement dynamics within gas-phase iodomethane molecules during dissociation induced by a synchronized near-infrared (NIR) laser pulse. Inner-shell photoionization creates positive charge, which is initially localized on the iodine atom. We map the electron transfer between the methyl and iodine fragments as a function of their interatomic separation set by the NIR–x-ray delay. We observe signatures of electron transfer for distances up to 20 angstroms and show that a realistic estimate of its effective spatial range can be obtained from a classical over-the-barrier model. The presented technique is applicable for spatiotemporal imaging of charge transfer dynamics in a wide range of molecular systems.


Journal of Synchrotron Radiation | 2015

X‐ray detectors at the Linac Coherent Light Source

Gabriel Blaj; P. Caragiulo; G. A. Carini; Sebastian Carron; A. Dragone; Dietrich Freytag; G. Haller; P. Hart; J. Hasi; R. Herbst; S. Herrmann; Chris Kenney; B. Markovic; K. Nishimura; S. Osier; J. Pines; B. Reese; J. Segal; A. Tomada; M. Weaver

This paper offers an overview of area detectors developed for use at the Linac Coherent Light Source (LCLS) with particular emphasis on their impact on science. The experimental needs leading to the development of second-generation cameras for LCLS are discussed and the new detector prototypes are presented.


Journal of Synchrotron Radiation | 2015

The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

Ken R. Ferguson; M. Bucher; John D. Bozek; Sebastian Carron; Jean-Charles Castagna; Ryan Coffee; G.I. Curiel; Michael Holmes; J. Krzywinski; Marc Messerschmidt; Michael P. Minitti; Ankush Mitra; Stefan Moeller; P. Noonan; T. Osipov; Sebastian Schorb; M. Swiggers; Alex Wallace; J. Yin; Christoph Bostedt

A description of the Atomic, Molecular and Optical Sciences (AMO) instrument at the Linac Coherent Light Source is presented. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.


Structural Dynamics | 2016

Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses.

Rebecca Boll; Benjamin Erk; Ryan Coffee; Sebastian Trippel; Thomas Kierspel; Cédric Bomme; John D. Bozek; Mitchell Burkett; Sebastian Carron; Ken R. Ferguson; Lutz Foucar; Jochen Küpper; T. Marchenko; Catalin Miron; M. Patanen; T. Osipov; Sebastian Schorb; Marc Simon; M. Swiggers; Simone Techert; K. Ueda; Christoph Bostedt; Daniel Rolles; Artem Rudenko

Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse.


Structural Dynamics | 2015

Communication: X-ray coherent diffractive imaging by immersion in nanodroplets

Rico Mayro P. Tanyag; Charles Bernando; Curtis Jones; Camila Bacellar; Ken R. Ferguson; Denis Anielski; Rebecca Boll; Sebastian Carron; James P. Cryan; Lars Englert; Sascha W. Epp; Benjamin Erk; Lutz Foucar; Luis F. Gomez; Robert Hartmann; Daniel M. Neumark; Daniel Rolles; Benedikt Rudek; Artem Rudenko; Katrin R. Siefermann; Joachim Ullrich; Fabian Weise; Christoph Bostedt; Oliver Gessner; Andrey F. Vilesov

Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. Images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system.


Synchrotron Radiation News | 2014

Detector Development for the Linac Coherent Light Source

G. Blaj; P. Caragiulo; G. A. Carini; Sebastian Carron; A. Dragone; D. Freytag; G. Haller; P. Hart; R. Herbst; S. Herrmann; J. Hasi; C. J. Kenney; B. Markovic; K. Nishimura; S. Osier; J. Pines; J. Segal; A. Tomada; M. Weaver

Since it began operations in 2009, the Linac Coherent Light Source (LCLS) has opened a new and dynamic frontier in terms of light sources and their associated science [1, 2]. An increase in brightness by a factor of a billion over pre-existing synchrotrons, in combination with ultra-brief pulses of coherent X-rays, is ushering in a new era in the photon sciences. Pulses with durations of 50 fs under standard conditions and below 10 fs with a reduced energy per bunch are possible. Over 1013 or 1012 X-rays per pulse can be generated at the upper and lower ends of the X-ray energy range of 285 eV to 9600 eV. One of the unique machine parameters is its strobe-like time structure, where single ultra-brief pulses are delivered at a repetition rate of 120 Hz. The above characteristics represent a singular environment in which to operate detectors and demand the development of a new class of high-frame-rate camera systems.


Scientific Data | 2017

Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source

Hemanth K. N. Reddy; Chun Hong Yoon; Andrew Aquila; Salah Awel; Kartik Ayyer; Anton Barty; Peter Berntsen; Johan Bielecki; Sergey Bobkov; Maximilian Bucher; Gabriella Carini; Sebastian Carron; Henry N. Chapman; Benedikt J. Daurer; Hasan Demirci; Tomas Ekeberg; Petra Fromme; Janos Hajdu; Max Felix Hanke; Philip Hart; Brenda G. Hogue; Ahmad Hosseinizadeh; Yoonhee Kim; Richard A. Kirian; Ruslan Kurta; Daniel S. D. Larsson; N. Duane Loh; Filipe R. N. C. Maia; Adrian P. Mancuso; Kerstin Mühlig

Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.


Scientific Data | 2016

A data set from flash X-ray imaging of carboxysomes

Max F. Hantke; Dirk Hasse; Tomas Ekeberg; Katja John; Martin Svenda; Duane Loh; Andrew V. Martin; Nicusor Timneanu; Daniel S. D. Larsson; Gijs van der Schot; Gunilla H. Carlsson; Margareta Ingelman; Jakob Andreasson; Daniel Westphal; Bianca Iwan; Charlotte Uetrecht; Johan Bielecki; Mengning Liang; Francesco Stellato; Daniel P. DePonte; Sadia Bari; Robert Hartmann; Nils Kimmel; Richard A. Kirian; M. Marvin Seibert; Kerstin Mühlig; Sebastian Schorb; Ken R. Ferguson; Christoph Bostedt; Sebastian Carron

Ultra-intense femtosecond X-ray pulses from X-ray lasers permit structural studies on single particles and biomolecules without crystals. We present a large data set on inherently heterogeneous, polyhedral carboxysome particles. Carboxysomes are cell organelles that vary in size and facilitate up to 40% of Earth’s carbon fixation by cyanobacteria and certain proteobacteria. Variation in size hinders crystallization. Carboxysomes appear icosahedral in the electron microscope. A protein shell encapsulates a large number of Rubisco molecules in paracrystalline arrays inside the organelle. We used carboxysomes with a mean diameter of 115±26 nm from Halothiobacillus neapolitanus. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min. Every diffraction pattern is a unique structure measurement and high-throughput imaging allows sampling the space of structural variability. The different structures can be separated and phased directly from the diffraction data and open a way for accurate, high-throughput studies on structures and structural heterogeneity in biology and elsewhere.


29th International Conference on Photonic, Electronic, and Atomic Collisions (ICPEAC), JUL 22-28, 2015, Toledo, SPAIN | 2015

A study of the dynamical energy flow in uracil

P. Bolognesi; P. O'Keeffe; T. Mazza; John D. Bozek; Ryan Coffee; Christoph Bostedt; Sebastian Schorb; Sebastian Carron; Raimund Feifel; Melanie Mucke; Markus Guehr; Emily Sistrunk; Jakob Grilj; Brian K. McFarland; Markus Koch; Mats Larsson; P. Salem; N. Berrah; L. Fang; T. Osipov; B. Murphy; Robert R. Lucchese; Michael Meyer; Maria Novella Piancastelli; K. Ueda; S. Mondal; Catalin Miron; R. Richter; Kevin C. Prince; Osamu Takahashi

The time resolved photoionization of C 1s in uracil following excitation of the neutral molecule by 260 nm pulses has been studied at LCLS.

Collaboration


Dive into the Sebastian Carron's collaboration.

Top Co-Authors

Avatar

Christoph Bostedt

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ken R. Ferguson

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

John D. Bozek

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sebastian Schorb

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Camila Bacellar

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Charles Bernando

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Curtis Jones

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

J. Krzywinski

SLAC National Accelerator Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge