Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Fraune is active.

Publication


Featured researches published by Sebastian Fraune.


Nature | 2010

The dynamic genome of Hydra

Jarrod Chapman; Ewen F. Kirkness; Oleg Simakov; Steven E. Hampson; Therese Mitros; Therese Weinmaier; Thomas Rattei; Prakash G. Balasubramanian; Jon Borman; Dana Busam; Kathryn Disbennett; Cynthia Pfannkoch; Nadezhda Sumin; Granger Sutton; Lakshmi Viswanathan; Brian Walenz; David Goodstein; Uffe Hellsten; Takeshi Kawashima; Simon Prochnik; Nicholas H. Putnam; Shengquiang Shu; Bruce Blumberg; Catherine E. Dana; Lydia Gee; Dennis F. Kibler; Lee Law; Dirk Lindgens; Daniel E. Martínez; Jisong Peng

The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann–Mangold organizer, pluripotency genes and the neuromuscular junction.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra

Sebastian Fraune; Thomas C. G. Bosch

Epithelia in animals are colonized by complex communities of microbes. Although a topic of long-standing interest, understanding the evolution of the microbial communities and their role in triggering innate immune responses has resisted analysis. Cnidaria are among the simplest animals at the tissue grade of organization. To obtain a better understanding of the microbiota associated with phylogenetically ancient epithelia, we have identified the epibiotic and endosymbiotic bacteria of two species of the cnidarian Hydra on the basis of rRNA comparisons. We analyzed individuals of Hydra oligactis and Hydra vulgaris from both laboratory cultures and the wild. We discovered that individuals from both species differ greatly in their bacterial microbiota. Although H. vulgaris polyps have a quite diverse microbiota, H. oligactis appears to be associated with only a limited number of microbes; some of them were found, unexpectedly, to be endosymbionts. Surprisingly, the microfauna showed similar characteristics in individuals of cultures maintained in the laboratory for >30 years and polyps directly isolated from the wild. The significant differences in the microbial communities between the two species and the maintenance of specific microbial communities over long periods of time strongly indicate distinct selective pressures imposed on and within the epithelium. Our analysis suggests that the Hydra epithelium actively selects and shapes its microbial community.


Developmental and Comparative Immunology | 2009

Uncovering the evolutionary history of innate immunity: The simple metazoan Hydra uses epithelial cells for host defence

Thomas C. G. Bosch; René Augustin; Friederike Anton-Erxleben; Sebastian Fraune; Georg Hemmrich; Holger Zill; Philip Rosenstiel; Gunnar Jacobs; Stefan Schreiber; Matthias Leippe; Mareike Stanisak; Joachim Grötzinger; Sascha Jung; Rainer Podschun; Joachim Bartels; Jürgen Harder; Jens-Michael Schröder

Although many properties of the innate immune system are shared among multicellular animals, the evolutionary origin remains poorly understood. Here we characterize the innate immune system in Hydra, one of the simplest multicellular animals known. In the complete absence of both protective mechanical barriers and mobile phagocytes, Hydras epithelium is remarkably well equipped with potent antimicrobial peptides to prevent pathogen infection. Induction of antimicrobial peptide production is mediated by the interaction of a leucine-rich repeats (LRRs) domain containing protein with a TIR-domain containing protein lacking LRRs. Conventional Toll-like receptors (TLRs) are absent in the Hydra genome. Our findings support the hypothesis that the epithelium represents the ancient system of host defence.


BioEssays | 2010

Why bacteria matter in animal development and evolution

Sebastian Fraune; Thomas C. G. Bosch

While largely studied because of their harmful effects on human health, there is growing appreciation that bacteria are important partners for invertebrates and vertebrates, including man. Epithelia in metazoans do not only select their microbiota; a coevolved consortium of microbes enables both invertebrates and vertebrates to expand the range of diet supply, to shape the complex immune system and to control pathogenic bacteria. Microbes in zebrafish and mice regulate gut epithelial homeostasis. In a squid, microbes control the development of the symbiotic light organ. These discoveries point to a key role for bacteria in any metazoan existence, and imply that beneficial bacteria‐host interactions should be considered an integral part of development and evolution.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Distinct antimicrobial peptide expression determines host species-specific bacterial associations

Sören Franzenburg; Jonas Walter; Sven Künzel; Jun Wang; John F. Baines; Thomas C. G. Bosch; Sebastian Fraune

Significance Animals form functional unities with communities of microbes. Often, these bacterial communities are highly specific to host species and resemble host phylogeny. But which factors determine community membership? Which host-factors are capable of selecting suitable bacteria by inhibiting colonization by potential foreign colonizers? In this study, we show that animals express a species-specific repertoire of antimicrobial peptides, which supports and maintains a species-specific bacterial community. Loss-of-function experiments showed that antimicrobial peptide composition is a predictor for bacterial colonization. Animals are colonized by coevolved bacterial communities, which contribute to the host’s health. This commensal microbiota is often highly specific to its host-species, inferring strong selective pressures on the associated microbes. Several factors, including diet, mucus composition, and the immune system have been proposed as putative determinants of host-associated bacterial communities. Here we report that species-specific antimicrobial peptides account for different bacterial communities associated with closely related species of the cnidarian Hydra. Gene family extensions for potent antimicrobial peptides, the arminins, were detected in four Hydra species, with each species possessing a unique composition and expression profile of arminins. For functional analysis, we inoculated arminin-deficient and control polyps with bacterial consortia characteristic for different Hydra species and compared their selective preferences by 454 pyrosequencing of the bacterial microbiota. In contrast to control polyps, arminin-deficient polyps displayed decreased potential to select for bacterial communities resembling their native microbiota. This finding indicates that species-specific antimicrobial peptides shape species-specific bacterial associations.


Proceedings of the National Academy of Sciences of the United States of America | 2010

In an early branching metazoan, bacterial colonization of the embryo is controlled by maternal antimicrobial peptides

Sebastian Fraune; René Augustin; Friederike Anton-Erxleben; Jörg Wittlieb; Christoph Gelhaus; Vladimir Klimovich; Marina Samoilovich; Thomas C. G. Bosch

Early embryos of many organisms develop outside the mother and are immediately confronted with myriads of potential colonizers. How these naive developmental stages control and shape the bacterial colonization is largely unknown. Here we show that early embryonic stages of the basal metazoan Hydra are able to control bacterial colonization by using maternal antimicrobial peptides. Antimicrobial peptides of the periculin family selecting for a specific bacterial colonization during embryogenesis are produced in the oocyte and in early embryos. If overexpressed in hydra ectodermal epithelial cells, periculin1a drastically reduces the bacterial load, indicating potent antimicrobial activity. Unexpectedly, transgenic polyps also revealed that periculin, in addition to bactericidal activity, changes the structure of the bacterial community. These findings delineate a role for antimicrobial peptides both in selecting particular bacterial partners during development and as important components of a “be prepared” strategy providing transgenerational protection.


Proceedings of the National Academy of Sciences of the United States of America | 2012

MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers

Sören Franzenburg; Sebastian Fraune; Sven Künzel; John F. Baines; Tomislav Domazet-Lošo; Thomas C. G. Bosch

Toll-like receptor (TLR) signaling is one of the most important signaling cascades of the innate immune system of vertebrates. Studies in invertebrates have focused on the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, and there is little information regarding the evolutionary origin and ancestral function of TLR signaling. In Drosophila, members of the Toll-like receptor family are involved in both embryonic development and innate immunity. In C. elegans, a clear immune function of the TLR homolog TOL-1 is controversial and central components of vertebrate TLR signaling including the key adapter protein myeloid differentiation primary response gene 88 (MyD88) and the transcription factor NF-κB are not present. In basal metazoans such as the cnidarians Hydra magnipapillata and Nematostella vectensis, all components of the vertebrate TLR signaling cascade are present, but their role in immunity is unknown. Here, we use a MyD88 loss-of-function approach in Hydra to demonstrate that recognition of bacteria is an ancestral function of TLR signaling and that this process contributes to both host-mediated recolonization by commensal bacteria as well as to defense against bacterial pathogens.


The ISME Journal | 2015

Bacteria-bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance.

Sebastian Fraune; Friederike Anton-Erxleben; René Augustin; Sören Franzenburg; Mirjam Knop; Katja Schröder; Doris Willoweit-Ohl; Thomas C. G. Bosch

Epithelial surfaces of most animals are colonized by diverse microbial communities. Although it is generally agreed that commensal bacteria can serve beneficial functions, the processes involved are poorly understood. Here we report that in the basal metazoan Hydra, ectodermal epithelial cells are covered with a multilayered glycocalyx that provides a habitat for a distinctive microbial community. Removing this epithelial microbiota results in lethal infection by the filamentous fungus Fusarium sp. Restoring the complex microbiota in gnotobiotic polyps prevents pathogen infection. Although mono-associations with distinct members of the microbiota fail to provide full protection, additive and synergistic interactions of commensal bacteria are contributing to full fungal resistance. Our results highlight the importance of resident microbiota diversity as a protective factor against pathogen infections. Besides revealing insights into the in vivo function of commensal microbes in Hydra, our findings indicate that interactions among commensal bacteria are essential to inhibit pathogen infection.


The ISME Journal | 2013

Bacterial colonization of Hydra hatchlings follows a robust temporal pattern

Sören Franzenburg; Sebastian Fraune; Philipp M. Altrock; Sven Künzel; John F. Baines; Arne Traulsen; Thomas C. G. Bosch

Animals are colonized by complex bacterial communities. The processes controlling community membership and influencing the establishment of the microbial ecosystem during development are poorly understood. Here we aimed to explore the assembly of bacterial communities in Hydra with the broader goal of elucidating the general rules that determine the temporal progression of bacterial colonization of animal epithelia. We profiled the microbial communities in polyps at various time points after hatching in four replicates. The composition and temporal patterns of the bacterial communities were strikingly similar in all replicates. Distinct features included high diversity of community profiles in the first week, a remarkable but transient adult-like profile 2 weeks after hatching, followed by progressive emergence of a stable adult-like pattern characterized by low species diversity and the preponderance of the Betaproteobacterium Curvibacter. Intriguingly, this process displayed important parallels to the assembly of human fecal communities after birth. In addition, a mathematical modeling approach was used to uncover the organizational principles of this colonization process, suggesting that both, local environmental or host-derived factor(s) modulating the colonization rate, as well as frequency-dependent interactions of individual bacterial community members are important aspects in the emergence of a stable bacterial community at the end of development.


Seminars in Immunology | 2010

How Hydra senses and destroys microbes

René Augustin; Sebastian Fraune; Thomas C. G. Bosch

Molecular genetic evidence has revealed that the basic templates of innate immune sensors were laid down in ancient animals such as the cnidarian Hydra. Important functions of Hydras innate immune sensors and effectors include not only protection against pathogens but also controlling tissue-microbiota homeostasis. The deep evolutionary connections imply that invertebrate and mammalian immune pathways have evolved from a reduced number of common ancestral building blocks to their present configurations.

Collaboration


Dive into the Sebastian Fraune's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge