Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sven Künzel is active.

Publication


Featured researches published by Sven Künzel.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype

Philipp Rausch; Ateequr Rehman; Sven Künzel; Robert Häsler; Stephan J. Ott; Stefan Schreiber; Philip Rosenstiel; Andre Franke; John F. Baines

The FUT2 (Secretor) gene is responsible for the presence of ABO histo-blood group antigens on the gastrointestinal mucosa and in bodily secretions. Individuals lacking a functional copy of FUT2 are known as “nonsecretors” and display an array of differences in susceptibility to infection and disease, including Crohn disease. To determine whether variation in resident microbial communities with respect to FUT2 genotype is a potential factor contributing to susceptibility, we performed 454-based community profiling of the intestinal microbiota in a panel of healthy subjects and Crohn disease patients and determined their genotype for the primary nonsecretor allele in Caucasian populations, W143X (G428A). Consistent with previous studies, we observe significant deviations in the microbial communities of individuals with Crohn disease. Furthermore, the FUT2 genotype explains substantial differences in community composition, diversity, and structure, and we identified several bacterial species displaying disease-by-genotype associations. These findings indicate that alterations in resident microbial communities may in part explain the variety of host susceptibilities surrounding nonsecretor status and that FUT2 is an important genetic factor influencing host–microbial diversity.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Distinct antimicrobial peptide expression determines host species-specific bacterial associations

Sören Franzenburg; Jonas Walter; Sven Künzel; Jun Wang; John F. Baines; Thomas C. G. Bosch; Sebastian Fraune

Significance Animals form functional unities with communities of microbes. Often, these bacterial communities are highly specific to host species and resemble host phylogeny. But which factors determine community membership? Which host-factors are capable of selecting suitable bacteria by inhibiting colonization by potential foreign colonizers? In this study, we show that animals express a species-specific repertoire of antimicrobial peptides, which supports and maintains a species-specific bacterial community. Loss-of-function experiments showed that antimicrobial peptide composition is a predictor for bacterial colonization. Animals are colonized by coevolved bacterial communities, which contribute to the host’s health. This commensal microbiota is often highly specific to its host-species, inferring strong selective pressures on the associated microbes. Several factors, including diet, mucus composition, and the immune system have been proposed as putative determinants of host-associated bacterial communities. Here we report that species-specific antimicrobial peptides account for different bacterial communities associated with closely related species of the cnidarian Hydra. Gene family extensions for potent antimicrobial peptides, the arminins, were detected in four Hydra species, with each species possessing a unique composition and expression profile of arminins. For functional analysis, we inoculated arminin-deficient and control polyps with bacterial consortia characteristic for different Hydra species and compared their selective preferences by 454 pyrosequencing of the bacterial microbiota. In contrast to control polyps, arminin-deficient polyps displayed decreased potential to select for bacterial communities resembling their native microbiota. This finding indicates that species-specific antimicrobial peptides shape species-specific bacterial associations.


Nature Genetics | 2016

Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota

Jun Wang; Louise B. Thingholm; Jurgita Skiecevičienė; Philipp Rausch; Martin Kummen; Johannes R. Hov; Frauke Degenhardt; Femke-Anouska Heinsen; Malte C. Rühlemann; Silke Szymczak; Kristian Holm; Tonu Esko; Jun Sun; Mihaela Pricop-Jeckstadt; Samer Al-Dury; Pavol Bohov; Jörn Bethune; Felix Sommer; David Ellinghaus; Rolf K. Berge; Matthias Hübenthal; Manja Koch; Karin Schwarz; Gerald Rimbach; Patricia Hübbe; Wei-Hung Pan; Raheleh Sheibani-Tezerji; Robert Häsler; Philipp Rosenstiel; Mauro D'Amato

Human gut microbiota is an important determinant for health and disease, and recent studies emphasize the numerous factors shaping its diversity. Here we performed a genome-wide association study (GWAS) of the gut microbiota using two cohorts from northern Germany totaling 1,812 individuals. Comprehensively controlling for diet and non-genetic parameters, we identify genome-wide significant associations for overall microbial variation and individual taxa at multiple genetic loci, including the VDR gene (encoding vitamin D receptor). We observe significant shifts in the microbiota of Vdr−/− mice relative to control mice and correlations between the microbiota and serum measurements of selected bile and fatty acids in humans, including known ligands and downstream metabolites of VDR. Genome-wide significant (P < 5 × 10−8) associations at multiple additional loci identify other important points of host–microbe intersection, notably several disease susceptibility genes and sterol metabolism pathway components. Non-genetic and genetic factors each account for approximately 10% of the variation in gut microbiota, whereby individual effects are relatively small.


PLOS ONE | 2013

Host Species and Environmental Effects on Bacterial Communities Associated with Drosophila in the Laboratory and in the Natural Environment

Fabian Staubach; John F. Baines; Sven Künzel; Elisabeth Bik; Dmitri A. Petrov

The fruit fly Drosophila is a classic model organism to study adaptation as well as the relationship between genetic variation and phenotypes. Although associated bacterial communities might be important for many aspects of Drosophila biology, knowledge about their diversity, composition, and factors shaping them is limited. We used 454-based sequencing of a variable region of the bacterial 16S ribosomal RNA gene to characterize the bacterial communities associated with wild and laboratory Drosophila isolates. In order to specifically investigate effects of food source and host species on bacterial communities, we analyzed samples from wild Drosophila melanogaster and D. simulans collected from a variety of natural substrates, as well as from adults and larvae of nine laboratory-reared Drosophila species. We find no evidence for host species effects in lab-reared flies; instead, lab of origin and stochastic effects, which could influence studies of Drosophila phenotypes, are pronounced. In contrast, the natural Drosophila–associated microbiota appears to be predominantly shaped by food substrate with an additional but smaller effect of host species identity. We identify a core member of this natural microbiota that belongs to the genus Gluconobacter and is common to all wild-caught flies in this study, but absent from the laboratory. This makes it a strong candidate for being part of what could be a natural D. melanogaster and D. simulans core microbiome. Furthermore, we were able to identify candidate pathogens in natural fly isolates.


Molecular Ecology | 2013

The role of biogeography in shaping diversity of the intestinal microbiota in house mice

Miriam Linnenbrink; Jun Wang; Emilie A. Hardouin; Sven Künzel; Dirk Metzler; John F. Baines

The microbial communities inhabiting the mammalian intestinal tract play an important role in diverse aspects of host biology. However, little is known regarding the forces shaping variation in these communities and their influence on host fitness. To shed light on the contributions of host genetics, transmission and geography to diversity in microbial communities between individuals, we performed a survey of intestinal microbial communities in a panel of 121 house mice derived from eight locations across Western Europe using pyrosequencing of the bacterial 16S rRNA gene. The host factors studied included population structure estimated by microsatellite loci and mitochondrial DNA, genetic distance and geography. To determine whether host tissue (mucosa)‐associated communities display properties distinct from those of the lumen, both the caecal mucosa and contents were examined. We identified Bacteroides, Robinsoniella and Helicobacter as the most abundant genera in both the caecal content and mucosa‐associated communities of wild house mice. Overall, we found geography to be the most significant factor explaining patterns of diversity in the intestinal microbiota, with a comparatively weaker influence of host population structure and genetic distance. Furthermore, the influence of host genetic distance was limited to the mucosa communities, consistent with this environment being more intimately coupled to the host.


Proceedings of the National Academy of Sciences of the United States of America | 2012

MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers

Sören Franzenburg; Sebastian Fraune; Sven Künzel; John F. Baines; Tomislav Domazet-Lošo; Thomas C. G. Bosch

Toll-like receptor (TLR) signaling is one of the most important signaling cascades of the innate immune system of vertebrates. Studies in invertebrates have focused on the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, and there is little information regarding the evolutionary origin and ancestral function of TLR signaling. In Drosophila, members of the Toll-like receptor family are involved in both embryonic development and innate immunity. In C. elegans, a clear immune function of the TLR homolog TOL-1 is controversial and central components of vertebrate TLR signaling including the key adapter protein myeloid differentiation primary response gene 88 (MyD88) and the transcription factor NF-κB are not present. In basal metazoans such as the cnidarians Hydra magnipapillata and Nematostella vectensis, all components of the vertebrate TLR signaling cascade are present, but their role in immunity is unknown. Here, we use a MyD88 loss-of-function approach in Hydra to demonstrate that recognition of bacteria is an ancestral function of TLR signaling and that this process contributes to both host-mediated recolonization by commensal bacteria as well as to defense against bacterial pathogens.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice

Jun Wang; Miriam Linnenbrink; Sven Künzel; Ricardo Fernandes; Marie-Josée Nadeau; Philip Rosenstiel; John F. Baines

Significance Recent investigation of several mammalian hosts suggests that their intestinal bacterial communities display evidence of clusters characterized by differences in specific bacterial taxa, a concept referred to as enterotypes. By performing stable isotope analysis of environmental samples, monitoring communities during dietary shifts, and collecting functional metagenomic sequence data, we provide novel insight into the origins and dynamics of enterotype-like community clustering in wild house mice. Two clusters are present in wild mice, one associated with higher plant-derived and another with animal-derived food intake, which can shift within a period of 1 wk. Remarkably, these clusters display shared characteristics with those present in humans, chimpanzees, and laboratory mice, suggesting ancient shared traits among mammalian bacterial communities. Understanding the origins of gut microbial community structure is critical for the identification and interpretation of potential fitness-related traits for the host. The presence of community clusters characterized by differences in the abundance of signature taxa, referred to as enterotypes, is a debated concept first reported in humans and later extended to other mammalian hosts. In this study, we provide a thorough assessment of their existence in wild house mice using a panel of evaluation criteria. We identify support for two clusters that are compositionally similar to clusters identified in humans, chimpanzees, and laboratory mice, characterized by differences in Bacteroides, Robinsoniella, and unclassified genera belonging to the family Lachnospiraceae. To further evaluate these clusters, we (i) monitored community changes associated with moving mice from the natural to a laboratory environment, (ii) performed functional metagenomic sequencing, and (iii) subjected wild-caught samples to stable isotope analysis to reconstruct dietary patterns. This process reveals differences in the proportions of genes involved in carbohydrate versus protein metabolism in the functional metagenome, as well as differences in plant- versus meat-derived food sources between clusters. In conjunction with wild-caught mice quickly changing their enterotype classification upon transfer to a standard laboratory chow diet, these results provide strong evidence that dietary history contributes to the presence of enterotype-like clustering in wild mice.


The ISME Journal | 2013

Bacterial colonization of Hydra hatchlings follows a robust temporal pattern

Sören Franzenburg; Sebastian Fraune; Philipp M. Altrock; Sven Künzel; John F. Baines; Arne Traulsen; Thomas C. G. Bosch

Animals are colonized by complex bacterial communities. The processes controlling community membership and influencing the establishment of the microbial ecosystem during development are poorly understood. Here we aimed to explore the assembly of bacterial communities in Hydra with the broader goal of elucidating the general rules that determine the temporal progression of bacterial colonization of animal epithelia. We profiled the microbial communities in polyps at various time points after hatching in four replicates. The composition and temporal patterns of the bacterial communities were strikingly similar in all replicates. Distinct features included high diversity of community profiles in the first week, a remarkable but transient adult-like profile 2 weeks after hatching, followed by progressive emergence of a stable adult-like pattern characterized by low species diversity and the preponderance of the Betaproteobacterium Curvibacter. Intriguingly, this process displayed important parallels to the assembly of human fecal communities after birth. In addition, a mathematical modeling approach was used to uncover the organizational principles of this colonization process, suggesting that both, local environmental or host-derived factor(s) modulating the colonization rate, as well as frequency-dependent interactions of individual bacterial community members are important aspects in the emergence of a stable bacterial community at the end of development.


Nature Communications | 2013

Genome-wide mapping of gene–microbiota interactions in susceptibility to autoimmune skin blistering

Girish Srinivas; Steffen Möller; Jun Wang; Sven Künzel; Detlef Zillikens; John F. Baines; Saleh M. Ibrahim

Susceptibility to chronic inflammatory diseases is determined by immunogenetic and environmental risk factors. Resident microbial communities often differ between healthy and diseased states, but whether these differences are of primary aetiological importance or secondary to the altered inflammatory environment remains largely unknown. Here we provide evidence for host gene–microbiota interactions contributing to disease risk in a mouse model of epidermolysis bullosa acquisita, an autoantibody-induced inflammatory skin disease. Using an advanced intercross, we identify genetic loci contributing to skin microbiota variability, susceptibility to skin blistering and their overlap. Furthermore, by treating bacterial species abundances as covariates with disease we reveal a novel disease locus. The majority of the identified covariate taxa are characterized by reduced abundance being associated with increased disease risk, providing evidence of a primary role in protection from disease. Further characterization of these putative probiotic species or species assemblages offers promising potential for preventative and therapeutic treatment development.


Nature Communications | 2015

Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome

Jun Wang; Shirin Kalyan; Natalie Steck; Leslie M. Turner; Bettina Harr; Sven Künzel; Marie Vallier; Robert Häsler; Andre Franke; Hans-Heinrich Oberg; Saleh M. Ibrahim; Guntram A. Grassl; Dieter Kabelitz; John F. Baines

Recent evidence suggests that natural selection operating on hosts to maintain their microbiome contributes to the emergence of new species, that is, the ‘hologenomic basis of speciation’. Here we analyse the gut microbiota of two house mice subspecies, Mus musculus musculus and M. m. domesticus, across their Central European hybrid zone, in addition to hybrids generated in the lab. Hybrid mice display widespread transgressive phenotypes (that is, exceed or fall short of parental values) in a variety of measures of bacterial community structure, which reveals the importance of stabilizing selection operating on the intestinal microbiome within species. Further genetic and immunological analyses reveal genetic incompatibilities, aberrant immune gene expression and increased intestinal pathology associated with altered community structure among hybrids. These results provide unique insight into the consequences of evolutionary divergence in a vertebrate ‘hologenome’, which may be an unrecognized contributing factor to reproductive isolation in this taxonomic group.

Collaboration


Dive into the Sven Künzel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel Vences

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Burga Braun

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrich Szewzyk

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge