Sen Takeda
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sen Takeda.
Cell | 1998
Shigenori Nonaka; Yosuke Tanaka; Yasushi Okada; Sen Takeda; Akihiro Harada; Yoshimitsu Kanai; Mizuho A. Kido; Nobutaka Hirokawa
Abstract Microtubule-dependent motor, murine KIF3B, was disrupted by gene targeting. The null mutants did not survive beyond midgestation, exhibiting growth retardation, pericardial sac ballooning, and neural tube disorganization. Prominently, the left–right asymmetry was randomized in the heart loop and the direction of embryonic turning. lefty-2 expression was either bilateral or absent. Furthermore, the node lacked monocilia while the basal bodies were present. Immunocytochemistry revealed KIF3B localization in wild-type nodal cilia. Video microscopy showed that these cilia were motile and generated a leftward flow. These data suggest that KIF3B is essential for the left–right determination through intraciliary transportation of materials for ciliogenesis of motile primary cilia that could produce a gradient of putative morphogen along the left–right axis in the node.
Cell | 2001
Chunjie Zhao; Junko Takita; Yosuke Tanaka; Mitsutoshi Setou; Terunaga Nakagawa; Sen Takeda; Hong Wei Yang; Sumio Terada; Takao Nakata; Yosuke Takei; Masaaki Saito; Shoji Tsuji; Yasuhide Hayashi; Nobutaka Hirokawa
The kinesin superfamily motor protein KIF1B has been shown to transport mitochondria. Here, we describe an isoform of KIF1B, KIF1Bbeta, that is distinct from KIF1B in its cargo binding domain. KIF1B knockout mice die at birth from apnea due to nervous system defects. Death of knockout neurons in culture can be rescued by expression of the beta isoform. The KIF1B heterozygotes have a defect in transporting synaptic vesicle precursors and suffer from progressive muscle weakness similar to human neuropathies. Charcot-Marie-Tooth disease type 2A was previously mapped to an interval containing KIF1B. We show that CMT2A patients contain a loss-of-function mutation in the motor domain of the KIF1B gene. This is clear indication that defects in axonal transport due to a mutated motor protein can underlie human peripheral neuropathy.
Cell | 1998
Yosuke Tanaka; Yoshimitsu Kanai; Yasushi Okada; Shigenori Nonaka; Sen Takeda; Akihiro Harada; Nobutaka Hirokawa
Mouse kif5B gene was disrupted by homologous recombination. kif5B-/- mice were embryonic lethal with a severe growth retardation at 9.5-11.5 days postcoitum. To analyze the significance of this conventional kinesin heavy chain in organelle transport, we studied the distribution of major organelles in the extraembryonic cells. The null mutant cells impaired lysosomal dispersion, while brefeldin A could normally induce the breakdown of their Golgi apparatus. More prominently, their mitochondria abnormally clustered in the perinuclear region. This mitochondrial phenotype was reversed by an exogenous expression of KIF5B, and a subcellular fractionation revealed that KIF5B is associated with mitochondria. These data collectively indicate that kinesin is essential for mitochondrial and lysosomal dispersion rather than for the Golgi-to-ER traffic in these cells.
Cell | 2006
Nobutaka Hirokawa; Yosuke Tanaka; Yasushi Okada; Sen Takeda
The establishment of left-right asymmetry in mammals is a good example of how multiple cell biological processes coordinate in the formation of a basic body plan. The leftward movement of fluid at the ventral node, called nodal flow, is the central process in symmetry breaking on the left-right axis. Nodal flow is autonomously generated by the rotation of cilia that are tilted toward the posterior on cells of the ventral node. These cilia are built by transport via the KIF3 motor complex. How nodal flow is interpreted to create left-right asymmetry has been a matter of debate. Recent evidence suggests that the leftward movement of membrane-sheathed particles, called nodal vesicular parcels (NVPs), may result in the activation of the non-canonical Hedgehog signaling pathway, an asymmetric elevation in intracellular Ca(2+) and changes in gene expression.
Cell | 2005
Yasushi Okada; Sen Takeda; Yosuke Tanaka; Juan-Carlos Izpisúa Belmonte; Nobutaka Hirokawa
The leftward flow in extraembryonic fluid is critical for the initial determination of the left-right axis of mouse embryos. It is unclear if this is a conserved mechanism among other vertebrates and how the directionality of the flow arises from the motion of cilia. In this paper, we show that rabbit and medakafish embryos also exhibit a leftward fluid flow in their ventral nodes. In all cases, primary monocilia present a clockwise rotational-like motion. Observations of defective ciliary dynamics in mutant mouse embryos support the idea that the posterior tilt of the cilia during rotational-like beating can explain the leftward fluid flow. Moreover, we show that this leftward flow may produce asymmetric distribution of exogenously introduced proteins, suggesting morphogen gradients as a subsequent mechanism of left-right axis determination. Finally, we experimentally and theoretically characterize under which conditions a morphogen gradient can arise from the flow.
Trends in Cell Biology | 1997
Nobutaka Hirokawa; Sumio TeradaTakeshi Funakoshi; Sen Takeda
A central problem concerning slow transport of cytoskeletal proteins along nerve axons is where they are assembled and the form in which they are transported. The polymer and subunit transport models are the two major hypotheses. Recent developments using molecular and cellular biophysics, molecular cell biology and gene technology have enabled visualization of moving forms of cytoskeletal proteins during their transport. Here, we argue that these studies support the subunit transport theory.
Journal of Cell Biology | 2002
Ying Xu; Sen Takeda; Takao Nakata; Yasuko Noda; Yosuke Tanaka; Nobutaka Hirokawa
KIFC3, a microtubule (MT) minus end–directed kinesin superfamily protein, is expressed abundantly and is associated with the Golgi apparatus in adrenocortical cells. We report here that disruption of the kifC3 gene induced fragmentation of the Golgi apparatus when cholesterol was depleted. Analysis of the reassembly process of the Golgi apparatus revealed bidirectional movement of the Golgi fragments in both wild-type and kifC3 −/− cells. However, we observed a markedly reduced inwardly directed motility of the Golgi fragments in cholesterol-depleted kifC3 −/− cells compared with either cholesterol-depleted wild-type cells or cholesterol-replenished kifC3 −/− cells. These results suggest that (a) under the cholesterol-depleted condition, reduced inwardly directed motility of the Golgi apparatus results in the observed Golgi scattering phenotype in kifC3 −/− cells, and (b) cholesterol is necessary for the Golgi fragments to attain sufficient inwardly directed motility by MT minus end–directed motors other than KIFC3, such as dynein, in kifC3 −/− cells. Furthermore, we showed that Golgi scattering was much more drastic in kifC3 −/− cells than in wild-type cells to the exogenous dynamitin expression even in the presence of cholesterol. These results collectively demonstrate that KIFC3 plays a complementary role in Golgi positioning and integration with cytoplasmic dynein.
Neuron | 1995
Sen Takeda; Takeshi Funakoshi; Nobutaka Hirokawa
The mechanism of cytoskeletal protein transport, especially the question of what kind of form the cytoskeletal proteins assume during transport in neurons in situ, has been an important, as yet unsettled issue. To clear up this matter, we adopted the embryonic zebrafish as a living animal model and applied the fluorescence recovery after photobleaching (FRAP) method. The zebrafish embryo is appropriate for this kind of study because of its transparency during the early developmental stage, allowing the observation of neurons that incorporate the microinjected fluorescent tubulin directly under fluorescence microscopy. FRAP revealed no movement of the bleached zone proximodistally, where fluorescence recovered gradually (recovery half-time, 44.2 +/- 11.2 min; n = 36), suggesting that the polymers are stationary but dynamic and that the true moving form could be small oligomers or heterodimers.
Journal of Cell Biology | 1999
Sen Takeda; Yoshiaki Yonekawa; Yosuke Tanaka; Yasushi Okada; Shigenori Nonaka; Nobutaka Hirokawa
Journal of Cell Biology | 1995
Yosuke Takei; Akihiro Harada; Sen Takeda; Katsunori Kobayashi; Sumio Terada; Tetsuo Noda; Tomoyuki Takahashi; Nobutaka Hirokawa