Yoshimitsu Kanai
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yoshimitsu Kanai.
Cell | 1998
Shigenori Nonaka; Yosuke Tanaka; Yasushi Okada; Sen Takeda; Akihiro Harada; Yoshimitsu Kanai; Mizuho A. Kido; Nobutaka Hirokawa
Abstract Microtubule-dependent motor, murine KIF3B, was disrupted by gene targeting. The null mutants did not survive beyond midgestation, exhibiting growth retardation, pericardial sac ballooning, and neural tube disorganization. Prominently, the left–right asymmetry was randomized in the heart loop and the direction of embryonic turning. lefty-2 expression was either bilateral or absent. Furthermore, the node lacked monocilia while the basal bodies were present. Immunocytochemistry revealed KIF3B localization in wild-type nodal cilia. Video microscopy showed that these cilia were motile and generated a leftward flow. These data suggest that KIF3B is essential for the left–right determination through intraciliary transportation of materials for ciliogenesis of motile primary cilia that could produce a gradient of putative morphogen along the left–right axis in the node.
Cell | 1998
Yosuke Tanaka; Yoshimitsu Kanai; Yasushi Okada; Shigenori Nonaka; Sen Takeda; Akihiro Harada; Nobutaka Hirokawa
Mouse kif5B gene was disrupted by homologous recombination. kif5B-/- mice were embryonic lethal with a severe growth retardation at 9.5-11.5 days postcoitum. To analyze the significance of this conventional kinesin heavy chain in organelle transport, we studied the distribution of major organelles in the extraembryonic cells. The null mutant cells impaired lysosomal dispersion, while brefeldin A could normally induce the breakdown of their Golgi apparatus. More prominently, their mitochondria abnormally clustered in the perinuclear region. This mitochondrial phenotype was reversed by an exogenous expression of KIF5B, and a subcellular fractionation revealed that KIF5B is associated with mitochondria. These data collectively indicate that kinesin is essential for mitochondrial and lysosomal dispersion rather than for the Golgi-to-ER traffic in these cells.
Nature | 2002
Mitsutoshi Setou; Dae-Hyung Seog; Yosuke Tanaka; Yoshimitsu Kanai; Yosuke Takei; Masahiko Kawagishi; Nobutaka Hirokawa
In cells, molecular motors operate in polarized sorting of molecules, although the steering mechanisms of motors remain elusive. In neurons, the kinesin motor conducts vesicular transport such as the transport of synaptic vesicle components to axons and of neurotransmitter receptors to dendrites, indicating that vesicles may have to drive the motor for the direction to be correct. Here we show that an AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionate) receptor subunit—GluR2-interacting protein (GRIP1)—can directly interact and steer kinesin heavy chains to dendrites as a motor for AMPA receptors. As would be expected if this complex is functional, both gene targeting and dominant negative experiments of heavy chains of mouse kinesin showed abnormal localization of GRIP1. Moreover, expression of the kinesin-binding domain of GRIP1 resulted in accumulation of the endogenous kinesin predominantly in the somatodendritic area. This pattern was different from that generated by the overexpression of the kinesin-binding scaffold protein JSAP1 (JNK/SAPK-associated protein-1, also known as Mapk8ip3), which occurred predominantly in the somatoaxon area. These results indicate that directly binding proteins can determine the traffic direction of a motor protein.
Neuron | 1995
Yoshimitsu Kanai; Nobutaka Hirokawa
Tau is abundant in the axon, whereas MAP2 is found in the cell body and dendrites. To understand their differential localization, we performed transfection studies on primary cultured neurons using tagged tau, MAP2, MAP2C, and their chimeric/deletion mutants. We found that MAP2 was prevented from entering the axon by its N-terminal projection domain and that microtubule binding of tau was stronger in the axon than in the cell body and dendrites, whereas that of MAP2/MAP2C was tighter in the cell body and dendrites than in the axon. These binding properties were determined by their microtubule-binding domains and were suggested to be regulated by phosphorylation, at least in the case of tau. Thus, the suppressed axonal transit of MAP2 and locally regulated microtubule binding may play important roles for their sorting in neurons.
Neuroscience | 1991
Reiko Takemura; Yoshimitsu Kanai; Nobutaka Hirokawa
A microtubule-associated protein, tau, promotes microtubule assembly, forms characteristic short cross-bridges (less than 20 nm) between microtubules, and switches isoforms from juvenile to adult at the end of the first postnatal week in the rat brain. The developmental expression of tau was studied in rat central nervous system, mainly the cerebrum and cerebellum, by in situ hybridization. Tau mRNAs were localized in a wide variety of neural cells. The expression of tau mRNAs in the spinal cord appeared to precede that in the brain, and the expression in the brainstem appeared to precede that in the cerebral cortex and cerebellum. On neural cells throughout the cortical plate of the cerebral cortex, tau mRNAs were expressed in large amounts during the first postnatal week, but by the third postnatal week the expression had become reduced. In the cerebellum, tau mRNAs were enriched in granule cells. The expression in the internal granular layer peaked during the second and third postnatal weeks, and the relatively high level of expression persisted to young adulthood. Thin section transmission electron microscopic study revealed that the proportion of neighboring microtubules in parallel fiber axons of cerebellar granule cells with the distance less than 20 nm was as low as 10% at the end of the first postnatal week, but this proportion increased to as high as 35% at the end of the second postnatal week. Northern blot analysis showed that tau mRNAs were congruent to 6 kb as was reported previously, and those detected in the first postnatal week were three- to five-fold more abundant and approximately 0.2 kb smaller than those detected in the second or third postnatal weeks. The data suggest that (a) tau mRNAs are abundantly expressed in a wide variety of neurons in the central nervous system at the stage of neurite formation, and (b) tau mRNAs are expressed in more basal levels at later stages, but may be important in the formation and maintenance of characteristic microtubule bundles typically found in parallel fiber axons and in other axons.
Journal of Cell Biology | 2014
Yoshimitsu Kanai; Daliang Wang; Nobutaka Hirokawa
The motor protein KIF13B has an unconventional role as a scaffold that recruits lipoprotein receptor–related protein 1 to caveolae, thereby enhancing its endocytosis.
Neuroscience Research | 1998
Yoshimitsu Kanai; Yasushi Okada; Yosuke Tanaka; Nobutaka Hirokawa
Kifs (kinesin super family proteins) are microtubule-based motor proteins involved in organelle transport in neuronal and nonneuronal cells. Conventinal kinesin has three types of heavy chain; KifSA, Kif5B and KifSC. We made a set of specific antibodies against these 3 kinesins and investigated their expression and localization in nervous system. Kif5B was the ubiquitous kinesin, which was expressed in every tissue, whereas Kif5A and Kif 5C were expressed exclusively in neuronal tissues. We also investigated their distribution and localization in nervous system.
Neuroscience Research Supplements | 1990
Yoshimitsu Kanai; Reiko Takemura; Nobutaka Hirokawa
Tau proteins are a class of low molecular mass microtubule-associated proteins that are specifically expressed in the nervous system. A cDNA clone of adult rat tau was isolated and sequenced. To analyze functions of tau proteins in vivo, we carried out transfection experiments. A fibroblast cell line, which was transfected with the cDNA, expressed three bands of tau, while six bands were expressed in rat brain. After dephosphorylation, one of the three bands disappeared, demonstrating directly that phosphorylation was involved in the multiplicity of tau. Morphologically, we observed a thick bundle formation of microtubules in the transiently and stably tau-gene-transfected cells. In addition, we found that the production of tubulin was prominently enhanced in the stably transfected cells. Thus, we suppose that tau proteins promote polymerization of tubulin, form bundles of microtubules in vivo, and play important roles in growing and maintaining nerve cell processes.
Neuron | 2004
Yoshimitsu Kanai; Naoshi Dohmae; Nobutaka Hirokawa
Nature | 1992
Jianguo Chen; Yoshimitsu Kanai; N. J. Cowan; Nobutaka Hirokawa