Senthil K. Murugapiran
University of Nevada, Las Vegas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Senthil K. Murugapiran.
The ISME Journal | 2016
Masaru K. Nobu; Jeremy A. Dodsworth; Senthil K. Murugapiran; Christian Rinke; Esther A. Gies; Gordon Webster; Patrick Schwientek; Peter Kille; R. John Parkes; Henrik Sass; Bo Barker Jørgensen; Andrew J. Weightman; Wen Tso Liu; Steven J. Hallam; George Tsiamis; Tanja Woyke; Brian P. Hedlund
The ‘Atribacteria’ is a candidate phylum in the Bacteria recently proposed to include members of the OP9 and JS1 lineages. OP9 and JS1 are globally distributed, and in some cases abundant, in anaerobic marine sediments, geothermal environments, anaerobic digesters and reactors and petroleum reservoirs. However, the monophyly of OP9 and JS1 has been questioned and their physiology and ecology remain largely enigmatic due to a lack of cultivated representatives. Here cultivation-independent genomic approaches were used to provide a first comprehensive view of the phylogeny, conserved genomic features and metabolic potential of members of this ubiquitous candidate phylum. Previously available and heretofore unpublished OP9 and JS1 single-cell genomic data sets were used as recruitment platforms for the reconstruction of atribacterial metagenome bins from a terephthalate-degrading reactor biofilm and from the monimolimnion of meromictic Sakinaw Lake. The single-cell genomes and metagenome bins together comprise six species- to genus-level groups that represent most major lineages within OP9 and JS1. Phylogenomic analyses of these combined data sets confirmed the monophyly of the ‘Atribacteria’ inclusive of OP9 and JS1. Additional conserved features within the ‘Atribacteria’ were identified, including a gene cluster encoding putative bacterial microcompartments that may be involved in aldehyde and sugar metabolism, energy conservation and carbon storage. Comparative analysis of the metabolic potential inferred from these data sets revealed that members of the ‘Atribacteria’ are likely to be heterotrophic anaerobes that lack respiratory capacity, with some lineages predicted to specialize in either primary fermentation of carbohydrates or secondary fermentation of organic acids, such as propionate.
PLOS ONE | 2013
Joseph P. Peacock; Jessica K. Cole; Senthil K. Murugapiran; Jeremy A. Dodsworth; Jenny C. Fisher; Duane P. Moser; Brian P. Hedlund
To characterize high-temperature cellulolytic microbial communities, two lignocellulosic substrates, ammonia fiber-explosion-treated corn stover and aspen shavings, were incubated at average temperatures of 77 and 85°C in the sediment and water column of Great Boiling Spring, Nevada. Comparison of 109,941 quality-filtered 16S rRNA gene pyrosequences (pyrotags) from eight enrichments to 37,057 quality-filtered pyrotags from corresponding natural samples revealed distinct enriched communities dominated by phylotypes related to cellulolytic and hemicellulolytic Thermotoga and Dictyoglomus, cellulolytic and sugar-fermenting Desulfurococcales, and sugar-fermenting and hydrogenotrophic Archaeoglobales. Minor enriched populations included close relatives of hydrogenotrophic Thermodesulfobacteria, the candidate bacterial phylum OP9, and candidate archaeal groups C2 and DHVE3. Enrichment temperature was the major factor influencing community composition, with a negative correlation between temperature and richness, followed by lignocellulosic substrate composition. This study establishes the importance of these groups in the natural degradation of lignocellulose at high temperatures and suggests that a substantial portion of the diversity of thermophiles contributing to consortial cellulolysis may be contained within lineages that have representatives in pure culture.
Philosophical Transactions of the Royal Society B | 2015
Jimmy Hser Wah Saw; Anja Spang; Katarzyna Zaremba-Niedzwiedzka; Lina Juzokaite; Jeremy A. Dodsworth; Senthil K. Murugapiran; Dan R. Colman; Cristina Takacs-Vesbach; Brian P. Hedlund; Lionel Guy; Thijs J. G. Ettema
The origin of eukaryotes represents an enigmatic puzzle, which is still lacking a number of essential pieces. Whereas it is currently accepted that the process of eukaryogenesis involved an interplay between a host cell and an alphaproteobacterial endosymbiont, we currently lack detailed information regarding the identity and nature of these players. A number of studies have provided increasing support for the emergence of the eukaryotic host cell from within the archaeal domain of life, displaying a specific affiliation with the archaeal TACK superphylum. Recent studies have shown that genomic exploration of yet-uncultivated archaea, the so-called archaeal ‘dark matter’, is able to provide unprecedented insights into the process of eukaryogenesis. Here, we provide an overview of state-of-the-art cultivation-independent approaches, and demonstrate how these methods were used to obtain draft genome sequences of several novel members of the TACK superphylum, including Lokiarchaeum, two representatives of the Miscellaneous Crenarchaeotal Group (Bathyarchaeota), and a Korarchaeum-related lineage. The maturation of cultivation-independent genomics approaches, as well as future developments in next-generation sequencing technologies, will revolutionize our current view of microbial evolution and diversity, and provide profound new insights into the early evolution of life, including the enigmatic origin of the eukaryotic cell.
Molecular Biology and Evolution | 2013
Thomas W. Schoenfeld; Senthil K. Murugapiran; Jeremy A. Dodsworth; Sally Floyd; Michael Lodes; David A. Mead; Brian P. Hedlund
Bioinformatics and functional screens identified a group of Family A-type DNA Polymerase (polA) genes encoded by viruses inhabiting circumneutral and alkaline hot springs in Yellowstone National Park and the US Great Basin. The proteins encoded by these viral polA genes (PolAs) shared no significant sequence similarity with any known viral proteins but were remarkably similar to PolAs encoded by two of three families of the bacterial phylum Aquificae and by several apicoplast-targeted PolA-like proteins found in the eukaryotic phylum Apicomplexa, which includes the obligate parasites Plasmodium, Babesia, and Toxoplasma. The viral gene products share signature elements previously associated only with Aquificae and Apicomplexa PolA-like proteins and were similar to proteins encoded by prophage elements of a variety of otherwise unrelated Bacteria, each of which additionally encoded a prototypical bacterial PolA. Unique among known viral DNA polymerases, the viral PolA proteins of this study share with the Apicomplexa proteins large amino-terminal domains with putative helicase/primase elements but low primary sequence similarity. The genomic context and distribution, phylogeny, and biochemistry of these PolA proteins suggest that thermophilic viruses transferred polA genes to the Apicomplexa, likely through secondary endosymbiosis of a virus-infected proto-apicoplast, and to the common ancestor of two of three Aquificae families, where they displaced the orthologous cellular polA gene. On the basis of biochemical activity, gene structure, and sequence similarity, we speculate that the xenologous viral-type polA genes may have functions associated with diversity-generating recombination in both Bacteria and Apicomplexa.
Genome Announcements | 2013
Senthil K. Murugapiran; Marcel Huntemann; Chia-Lin Wei; James Han; John C. Detter; Cliff Han; Tracy Erkkila; Hazuki Teshima; Amy Chen; Nikos C. Kyrpides; Konstantinos Mavrommatis; Victor Markowitz; Ernest Szeto; Natalia Ivanova; Ioanna Pagani; Jenny Lam; Austin I. McDonald; Jeremy A. Dodsworth; Amrita Pati; Lynne Goodwin; Lin Peters; Sam Pitluck; Tanja Woyke; Brian P. Hedlund
ABSTRACT The strains Thermus oshimai JL-2 and Thermus thermophilus JL-18 each have a circular chromosome, 2.07 Mb and 1.9 Mb in size, respectively, and each has two plasmids ranging from 0.27 Mb to 57.2 kb. The megaplasmid of each strain contains a gene cluster for the reduction of nitrate to nitrous oxide, consistent with their incomplete denitrification phenotypes.
International Journal of Systematic and Evolutionary Microbiology | 2014
Jeremy A. Dodsworth; Jonathan Gevorkian; Fairuz Despujos; Jessica K. Cole; Senthil K. Murugapiran; Hong Ming; Wen-Jun Li; Gengxin Zhang; Alice Dohnalkova; Brian P. Hedlund
A thermophilic, filamentous, heterotrophic bacterium, designated strain JAD2(T), a member of an as-yet uncultivated lineage that is present and sometimes abundant in some hot springs worldwide, was isolated from sediment of Great Boiling Spring in Nevada, USA. Cells had a mean diameter of 0.3 µm and length of 4.0 µm, and formed filaments that typically ranged in length from 20 to 200 µm. Filaments were negative for the Gram stain reaction, spores were not formed and motility was not observed. The optimum temperature for growth was 72.5-75 °C, with a range of 67.5-75 °C, and the optimum pH for growth was 6.75, with a range of pH 6.5-7.75. Peptone, tryptone or yeast extract were able to support growth when supplemented with vitamins, but no growth was observed using a variety of defined organic substrates. Strain JAD2(T) was microaerophilic and facultatively anaerobic, with optimal growth at 1% (v/v) O2 and an upper limit of 8% O2. The major cellular fatty acids (>5%) were C(16 : 0), C(19 : 0), C(18 : 0), C(20 : 0) and C(19 : 1). The genomic DNA G+C content was 69.3 mol%. Phylogenetic and phylogenomic analyses using sequences of the 16S rRNA gene and other conserved genes placed JAD2(T) within the phylum Chloroflexi, but not within any existing class in this phylum. These results indicate that strain JAD2(T) is the first cultivated representative of a novel lineage within the phylum Chloroflexi, for which we propose the name Thermoflexus hugenholtzii gen. nov., sp. nov., within Thermoflexia classis nov., Thermoflexales ord. nov. and Thermoflexaceae fam. nov. The type strain of Thermoflexus hugenholtzii is JAD2(T) ( = JCM 19131(T) = CCTCC AB-2014030(T)).
Standards in Genomic Sciences | 2013
Senthil K. Murugapiran; Marcel Huntemann; Chia-Lin Wei; James Han; John C. Detter; Cliff Han; Tracy Erkkila; Hazuki Teshima; Amy Chen; Nikos C. Kyrpides; Konstantinos Mavrommatis; Victor Markowitz; Ernest Szeto; Natalia Ivanova; Ioanna Pagani; Amrita Pati; Lynne Goodwin; Lin Peters; Sam Pitluck; Jenny Lam; Austin I. McDonald; Jeremy A. Dodsworth; T. Woyke; Brian P. Hedlund
The complete genomes of Thermus oshimai JL-2 and T. thermophilus JL-18 each consist of a circular chromosome, 2.07 Mb and 1.9 Mb, respectively, and two plasmids ranging from 0.27 Mb to 57.2 kb. Comparison of the T. thermophilus JL-18 chromosome with those from other strains of T. thermophilus revealed a high degree of synteny, whereas the megaplasmids from the same strains were highly plastic. The T. oshimai JL-2 chromosome and megaplasmids shared little or no synteny with other sequenced Thermus strains. Phylogenomic analyses using a concatenated set of conserved proteins confirmed the phylogenetic and taxonomic assignments based on 16S rRNA phylogenetics. Both chromosomes encode a complete glycolysis, tricarboxylic acid (TCA) cycle, and pentose phosphate pathway plus glucosidases, glycosidases, proteases, and peptidases, highlighting highly versatile heterotrophic capabilities. Megaplasmids of both strains contained a gene cluster encoding enzymes predicted to catalyze the sequential reduction of nitrate to nitrous oxide; however, the nitrous oxide reductase required for the terminal step in denitrification was absent, consistent with their incomplete denitrification phenotypes. A sox gene cluster was identified in both chromosomes, suggesting a mode of chemolithotrophy. In addition, nrf and psr gene clusters in T. oshmai JL-2 suggest respiratory nitrite ammonification and polysulfide reduction as possible modes of anaerobic respiration.
Applied and Environmental Microbiology | 2016
Eric D. Becraft; Jeremy A. Dodsworth; Senthil K. Murugapiran; J. Ingemar Ohlsson; Brandon R. Briggs; Jad Kanbar; Iwijn De Vlaminck; Stephen R. Quake; Hailiang Dong; Brian P. Hedlund; Wesley D. Swingley
ABSTRACT The vast majority of microbial life remains uncatalogued due to the inability to cultivate these organisms in the laboratory. This “microbial dark matter” represents a substantial portion of the tree of life and of the populations that contribute to chemical cycling in many ecosystems. In this work, we leveraged an existing single-cell genomic data set representing the candidate bacterial phylum “Calescamantes” (EM19) to calibrate machine learning algorithms and define metagenomic bins directly from pyrosequencing reads derived from Great Boiling Spring in the U.S. Great Basin. Compared to other assembly-based methods, taxonomic binning with a read-based machine learning approach yielded final assemblies with the highest predicted genome completeness of any method tested. Read-first binning subsequently was used to extract Calescamantes bins from all metagenomes with abundant Calescamantes populations, including metagenomes from Octopus Spring and Bison Pool in Yellowstone National Park and Gongxiaoshe Spring in Yunnan Province, China. Metabolic reconstruction suggests that Calescamantes are heterotrophic, facultative anaerobes, which can utilize oxidized nitrogen sources as terminal electron acceptors for respiration in the absence of oxygen and use proteins as their primary carbon source. Despite their phylogenetic divergence, the geographically separate Calescamantes populations were highly similar in their predicted metabolic capabilities and core gene content, respiring O2, or oxidized nitrogen species for energy conservation in distant but chemically similar hot springs.
Environmental Microbiology | 2018
Wei Xie; Haiwei Luo; Senthil K. Murugapiran; Jeremy A. Dodsworth; Songze Chen; Ying Sun; Brian P. Hedlund; Peng Wang; Huaying Fang; Minghua Deng; Chuanlun L. Zhang
Marine Group II archaea are widely distributed in global oceans and dominate the total archaeal community within the upper euphotic zone of temperate waters. However, factors controlling the distribution of MGII are poorly delineated and the physiology and ecological functions of these still-uncultured organisms remain elusive. In this study, we investigated the planktonic MGII associated with particles and in free-living forms in the Pearl River Estuary (PRE) over a 10-month period. We detected high abundance of particle-associated MGII in PRE (up to ∼108 16S rRNA gene copies/l), which was around 10-fold higher than the free-living MGII in the same region, and an order of magnitude higher than previously reported in other marine environments. 10‰ salinity appeared to be a threshold value for these MGII because MGII abundance decreased sharply below it. Above 10‰ salinity, the abundance of MGII on the particles was positively correlated with phototrophs and MGII in the surface water was negatively correlated with irradiance. However, the abundances of those free-living MGII showed positive correlations with salinity and temperature, suggesting the different physiological characteristics between particle-attached and free-living MGIIs. A nearly completely assembled metagenome, MGIIa_P, was recovered using metagenome binning methods. Compared with the other two MGII genomes from surface ocean, MGIIa_P contained higher proportions of glycoside hydrolases, indicating the ability of MGIIa_P to hydrolyse glycosidic bonds in complex sugars in PRE. MGIIa_P is the first assembled MGII metagenome containing a catalase gene, which might be involved in scavenging reactive oxygen species generated by the abundant phototrophs in the eutrophic PRE. Our study presented the widespread and high abundance of MGII in the water columns of PRE, and characterized the determinant abiotic factors affecting their distribution. Their association with heterotrophs, preference for particles and resourceful metabolic traits indicate MGII might play a significant role in metabolising organic matters in the PRE and other temperate estuarine systems.
Frontiers in Microbiology | 2017
Eric D. Becraft; Jeremy A. Dodsworth; Senthil K. Murugapiran; Scott C. Thomas; J. Ingemar Ohlsson; Ramunas Stepanauskas; Brian P. Hedlund; Wesley D. Swingley
Recent progress based on single-cell genomics and metagenomic investigations of archaea in a variety of extreme environments has led to significant advances in our understanding of the diversity, evolution, and metabolic potential of archaea, yet the vast majority of archaeal diversity remains undersampled. In this work, we coordinated single-cell genomics with metagenomics in order to construct a near-complete genome from a deeply branching uncultivated archaeal lineage sampled from Great Boiling Spring (GBS) in the U.S. Great Basin, Nevada. This taxon is distantly related (distinct families) to an archaeal genome, designated “Novel Archaeal Group 1” (NAG1), which was extracted from a metagenome recovered from an acidic iron spring in Yellowstone National Park (YNP). We compared the metabolic predictions of the NAG1 lineage to better understand how these archaea could inhabit such chemically distinct environments. Similar to the NAG1 population previously studied in YNP, the NAG1 population from GBS is predicted to utilize proteins as a primary carbon source, ferment simple carbon sources, and use oxygen as a terminal electron acceptor under oxic conditions. However, GBS NAG1 populations contained distinct genes involved in central carbon metabolism and electron transfer, including nitrite reductase, which could confer the ability to reduce nitrite under anaerobic conditions. Despite inhabiting chemically distinct environments with large variations in pH, GBS NAG1 populations shared many core genomic and metabolic features with the archaeon identified from YNP, yet were able to carve out a distinct niche at GBS.