Shane B. Smith
University of Nevada, Reno
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shane B. Smith.
Bulletin of the Seismological Society of America | 2006
James B. Scott; Tiana Rasmussen; Barbara Luke; Wanda J. Taylor; Jeffery L. Wagoner; Shane B. Smith
Las Vegas Valley has a rapidly growing population exceeding 1.5 million, subject to significant seismic risk. Surveys of shallow shear velocity performed in the Las Vegas urban area included a 13-km-long transect parallel to Las Vegas Blvd. (The Strip), and borehole and surface-wave measurements of 30 additional sites. The transect was completed quickly and economically using the refraction microtremor method, providing shear velocity versus depth profiles at 49 locations. The lowest velocities in the transect, nehrp d class, are near intrabasin faults found near Interstate 15 and Lake Mead Blvd. Calcite cementation of alluvium (a.k.a. caliche) along the Las Vegas Strip elevates Vs30 values to 500–600 m/sec, nehrp c class. Our transect measurements correlate poorly against geologic map units, which do not predict the conditions of any individual site with accuracy sufficient for engineering application. Some usda soil map units do correlate, and Vs30 predictions based on measurements of soil units match transect measurements in the transect area. Extending soil-map predictions away from the area of dense measurement coverage generally failed to predict new measurements. Further, for several test sites the predictions were not conservative, in that the soil model predicted higher Vs30 than was later measured (predicting lesser potential ground motion). Subsurface information is needed to build a Vs30 model extending predictions throughout Las Vegas Valley. A detailed stratigraphic model built by correlating >1100 deep well logs in Las Vegas predicts Vs30 better than surface maps, but again only in parts of the Valley well-measured for velocity. The stratigraphic model yields good predictions of our transect Vs30 measurements. It is less accurate, although at least conservative, when extended to sites away from the transect.
Bulletin of the Seismological Society of America | 2006
Weston Albert Thelen; Matthew D. H. Clark; Christopher T. Lopez; Chris Loughner; Hyunmee Park; James B. Scott; Shane B. Smith; Bob Greschke
This study assesses a 60 km north-northeast–south-southwest transect along the San Gabriel River for shallow shear velocities, in San Gabriel Valley and the Los Angeles Basin of southern California. We assessed a total of 214 sites, 199 along the transect at 300-m spacing, during a one-week field campaign with the refraction microtremor (ReMi) technique. The transect9s maximum 30-m shear velocity (Vs30) occurs in coarse alluvium of San Gabriel Valley where the San Gabriel River exits the San Gabriel Mountains, at 730 m/sec, upper National Earthquake Hazards Reduction Program (nehrp) site class C. Much of the northeast section of the transect (in San Gabriel Valley) is also nehrp class C, or near the CD class boundary. The section of the transect south from Whittier Narrows to Seal Beach shows nehrp-D velocities in active alluvium. The transect9s lowest Vs30, 230 m/ sec at the Alamitos Bay estuary, is also classed as nehrp-D. An increase toward the nehrp CD class boundary occurs at the shoreline beach outside Alamitos Bay, confirmed by additional measurements on Seal Beach. Our measured Vs30 values generally show good correlation with published site-classification maps and existing borehole data sets. There is no evidence in our data for an increase in velocity predicted by Wills et al. (2000) at their CD to BC site classification boundary at the San Gabriel Mountains front, nor for any decrease at their D to DE class boundary at Alamitos Bay. Very large Vs30 variations exist in soil and geologic units sampled by our survey. The Vs30 variations we measured are smaller than Vs30 variations of 30% or more we found between closely spaced (
Bulletin of the Seismological Society of America | 2009
Graham M. Kent; Neal W. Driscoll; Shane B. Smith; Robert Karlin; Jeffrey Andrew Dingler; Alistair J. Harding; Gordon G. Seitz; Jeffrey Matthew Babcock
High-resolution seismic compressed high intensity Radar pulse (CHIRP) data and piston cores acquired in Fallen Leaf Lake (FLL) and Lake Tahoe provide new paleoseismic constraints on the West Tahoe-Dollar Point fault (WTDPF), the western- most normal fault in the Lake Tahoe Basin, California. Paleoearthquake records along three sections of the WTDPF are investigated to determine the magnitude and recency of coseismic slip. CHIRP profiles image vertically offset and folded strata along the southern and central sections that record deformation associated with the most recent event (MRE) on the WTDPF. Three faults are imaged beneath FLL, and the maximum vertical offset observed across the primary trace of the WTDPF is ∼3:7 m. Coregis- tered piston cores in FLL recovered sediment and organic material above and below the MRE horizon. Radiocarbon dating of organic material constrained the age of the MRE to be between 3.6 and 4.9 k.y. B.P., with a preferred age of 4.1-4.5 k.y. B.P. In Lake Tahoe near Rubicon Point, approximately 2.0 m of vertical offset is observed across the WTDPF. Based on nearby core data, the timing of this offset occurred be- tween ∼3-10 k:y: B.P., which is consistent with the MRE age in FLL. Offset of Tioga- aged glacial deposits provides a long-term record of vertical deformation on the WTDPF since ∼13-14 k:y: B.P., yielding a slip rate of 0:4-0:8 mm=yr. In summary, the slip rate and earthquake potential along the WTDPF is comparable to the nearby Genoa fault, making it the most active and potentially hazardous fault in the Lake Tahoe Basin.
Geological Society of America Bulletin | 2013
Shane B. Smith; Robert Karlin; Graham M. Kent; Gordon G. Seitz; Neal W. Driscoll
Gravity-flow deposits recovered in a suite of sediment cores in Lake Tahoe were examined to determine if the event deposits were triggered by strong shaking from earthquakes on active faults within and in close proximity to the Lake Tahoe Basin. The acoustic character and distribution of individual lacustrine deposits as well as potential source regions were constrained by high-resolution seismic Chirp reflection and multibeam bathymetric data. Between 14 and 17 Holocene event deposits have been identified in Lake Tahoe, and examination of their source areas suggests they originated from different initiation points along the steep margin, with some being synchronous around the basin, as opposed to flood-related deposits. Lithologic characteristics, magnetic susceptibility, carbon and nitrogen isotopic signatures, opal content, and 14 C dating indicate that these event deposits are reworked lacustrine material. Radiocarbon dates indicate that the emplacement of these event deposit sediments correlates well with the late Holocene paleoseismic earthquake record developed for the Tahoe Basin. When taken alone, the causality of these events may appear ambiguous, but when the evidence is examined comprehensively, it suggests that strong shaking may likely have been the primary trigger for many of the event deposits observed in the lake throughout the Holocene. For example, four event deposits are assigned to Tahoe Basin faults. The most recent earthquakes occurred on the Incline Village fault (between 630 and 120 cal. yr B.P.); the southern segment of the West Tahoe fault (between 4510 and 4070 cal. yr B.P.); on the central and northern segments of the West Tahoe fault (5600–5330 cal. yr B.P.); and on the West Tahoe fault (between 7890 and 7190 cal. yr B.P.). The oldest of the four associated Tahoe Basin events coincides with the beginning of an extended period when Lake Tahoe was likely not spilling or spilling intermittently, and this suggests that active faulting and footwall uplift cut off the outlet at this time, exaggerating drought conditions downstream. Likewise, the event between 5600 and 5330 cal. yr B.P. on the West Tahoe fault may have exaggerated a smaller drought reflected downstream in Pyramid Lake. This event may also be the most recent event (MRE) on the largest segment of the West Tahoe fault. If correct, the period since the last rupture is approximately twice the estimated average recurrence interval for the Rubicon segment of the West Tahoe fault. A more complete Holocene record of strong shaking greatly extends the paleoseismic record in the region and indicates a combined recurrence interval of between 750 and 800 yr for all faults in the region.
Geosphere | 2013
Jillian Maloney; Paula J. Noble; Neal W. Driscoll; Graham M. Kent; Shane B. Smith; Gretchen C. Schmauder; Jeffrey Matthew Babcock; Robert L. Baskin; Robert Karlin; Annie Kell; Gordon G. Seitz; Susan Zimmerman; John A. Kleppe
The West Tahoe–Dollar Point fault (WTDPF) extends along the western margin of the Lake Tahoe Basin (northern Sierra Nevada, western United States) and is characterized as its most hazardous fault. Fallen Leaf Lake, Cascade Lake, and Emerald Bay are three subbasins of the Lake Tahoe Basin, located south of Lake Tahoe, and provide an opportunity to image primary earthquake deformation along the WTDPF and associated landslide deposits. Here we present results from high-resolution seismic Chirp (compressed high intensity radar pulse) surveys in Fallen Leaf Lake and Cascade Lake, multibeam bathymetry coverage of Fallen Leaf Lake, onshore Lidar (light detection and ranging) data for the southern Lake Tahoe Basin, and radiocarbon dates from piston cores in Fallen Leaf Lake and Emerald Bay. Slide deposits imaged beneath Fallen Leaf Lake appear to be synchronous with slides in Lake Tahoe, Emerald Bay, and Cascade Lake. The temporal correlation of slides between multiple basins suggests triggering by earthquakes on the WTDPF system. If this correlation is correct, we postulate a recurrence interval of ∼3–4 k.y. for large earthquakes on the Fallen Leaf Lake segment of the WTDPF, and the time since the most recent event (∼4.5 k.y. ago) exceeds this recurrence time. In addition, Chirp data beneath Cascade Lake image strands of the WTDPF offsetting the lake floor as much as ∼7.5 m. The Cascade Lake data combined with onshore Lidar allow us to map the WTDPF continuously between Fallen Leaf Lake and Cascade Lake. This improved mapping of the WTDPF reveals the fault geometry and architecture south of Lake Tahoe and improves the geohazard assessment of the region.
Tectonophysics | 2004
Weston Albert Thelen; Shane B. Smith; James B. Scott; Matthew D. H. Clark; Satish K. Pullammanappallil
Quaternary Science Reviews | 2016
Paula J. Noble; G.Ian Ball; Susan Zimmerman; Jillian Maloney; Shane B. Smith; Graham M. Kent; Kenneth D. Adams; Robert Karlin; Neal W. Driscoll
Archive | 2005
James B. Scott; Matthew D. H. Clark; Christopher T. Lopez; Aasha Pancha; Tiana Rasmussen; Shane B. Smith; W. Thelen
Archive | 2005
Weston Albert Thelen; Micah H. Clark; Cristina Lopez; Christopher P. Loughner; Hyun-Chul Park; James B. Scott; Shane B. Smith; B. Greschke
Archive | 2002
Aline Concha-dimas; Tiana Rasmussen; Shane B. Smith; Wes Thelen; Aasha Pancha; James G. Anderson